Skip to main content
Log in

Density-functional study of methanol adsorption on the Al(100) surface

  • Metals and Superconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The interaction of methanol (CH3OH) molecules with the Al(100) surface is investigated in the framework of the density-functional theory. Numerical parameters, such as the decrease in the kinetic energy, number of special points used for integration over the Brillouin zone, broadening of the filling function, and number of atomic metal layers, are determined. The density-functional theory calculations with these parameters offer reliable data on the total energy and structural optimization of the system under consideration. The geometric characteristics of a methanol molecule in both isolated and adsorbed states on the metal surface are calculated. It is shown that the electron pseudodensity at the metal surface changes in the presence of an adsorbed molecule. The influence of the orientation of the methanol molecule (with respect to the metal surface and nearest neighbor methanol molecules) on the total energy of the system is analyzed. It is found that the total energy of the system is affected by the metal deformation and the interaction of adsorbed molecules with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Martin and W. Brockmann, in Proceedings of 3rd International Conference EURADH96, Cambridge, UK (1996), p. 595.

  2. W. Nitschke, Surf. Interface Anal. 16, 247 (1990).

    Google Scholar 

  3. A. L. Zaitsev, Double Liason 495–496, 9 (1994).

    Google Scholar 

  4. R. M. Dreizler and E. K. U. Gross, Density-Functional Theory: An Approach to Approach to the Quantum Many-Body Problem (Springer, Berlin, 1990).

    Google Scholar 

  5. H. Kuhlenbeck and H.-J. Freund, in Metal-Ligand Interaction: From Atoms to Clusters, to Surface, Ed. by D. R. Salahub and Nino Russo (Kluwer Academic, Dordrecht, 1992), pp. 37–70.

    Google Scholar 

  6. P. Hogenberg and W. Kohn, Phys. Rev., Sect. B 136, 864 (1964).

    ADS  Google Scholar 

  7. W. Kohn and L. J. Sham, Phys. Rev., Sect. A 140, 1133 (1965).

    ADS  MathSciNet  Google Scholar 

  8. M. C. Payne, M. P. Teter, D. C. Allan, et al., Rev. Mod. Phys. 64, 1045 (1992).

    Article  ADS  Google Scholar 

  9. http://www.pcpm.ucl.ac.be/ABINIT.

  10. X. Gonze, Phys. Rev. B 54, 4383 (1996).

    Article  ADS  Google Scholar 

  11. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  ADS  Google Scholar 

  12. N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

    ADS  Google Scholar 

  13. A. Khein and D. C. Allan, private communication; http://www.abinit.org/ABINIT/Psps/LDA_TM/lda.html.

  14. W. K. Press, B. F. Flannery, S. A. Teukolsky, and W. T. Vettering, Numerical Recipes. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1989), p. 308.

    Google Scholar 

  15. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Marzari, PhD Dissertation (Univ. of Cambridge, 1996); http://www.physics.rutgers.edu/in˜marzari/preprints.

  17. N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999).

    Article  ADS  Google Scholar 

  18. V. Missol, Energia Powierzchni Rozdialu Faz w Metalach (Šlask, Katowice, 1976; Metallurgiya, Moscow, 1978).

    Google Scholar 

  19. C. J. Smithells, Metals: Reference Book, 5th ed. (Butterworths, London, 1976; Metallurgiya, Moscow, 1980).

    Google Scholar 

  20. Chemical Encyclopedia (Bol’shaya Rossiiskaya Éntsiklopediya, Moscow, 1992), Vol. 3.

  21. J. E. Whitten, C. E. Young, M. J. Pellin, and D. M. Gruen, Surf. Sci. 282, 97 (1993).

    Article  Google Scholar 

  22. P. A. Hackett, S. A. Mitchell, D. M. Rayner, and B. Simard, in Metal-Ligand Interaction, Structure, and Reactivity, Ed. by D. R. Salahub and Nino Russo (Kluwer Academic, Dordrecht, 1992), Ser. C, Vol. 474, pp. 289–324.

    Google Scholar 

  23. L. T. Sein and S. A. Jansen, J. Phys. Chem. B 102, 2415 (1998).

    Article  Google Scholar 

  24. J. M. Wittbrodt, W. L. Hase, and H. B. Schlegel, J. Phys. Chem. B 102, 6539 (1998).

    Article  Google Scholar 

  25. H. Tachikawa and T. J. Tsuchida, Mol. Catal. A 277 (1995).

  26. D. Farasiu and P. Lukinskas, J. Phys. Chem. A 103(42), 8483 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 12, 2003, pp. 2118–2123.

Original Russian Text Copyright © 2003 by Za\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \)tsev, Detraux, Pleskachevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Gonze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.L., Detraux, F., Pleskachevskii, Y.M. et al. Density-functional study of methanol adsorption on the Al(100) surface. Phys. Solid State 45, 2218–2224 (2003). https://doi.org/10.1134/1.1635488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1635488

Keywords

Navigation