Skip to main content
Log in

A hydrogen atom in a superstrong magnetic field and the Zeldovich effect

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the problem of a hydrogen atom in a superstrong magnetic field, BB a =2.35×109 G. The analytical formulas that describe the energy spectrum of this atom are derived for states with various quantum numbers n ρ and m. A comparison with available calculations shows their high accuracy for BB a . We note that the derived formulas point to a manifestation of the Zeldovich effect, i.e., a rearrangement of the atomic spectrum under the influence of strong short-range Coulomb potential distortion. We discuss the relativistic corrections to level energies, which increase in importance with magnetic field and become significant for B≳1014 G. We suggest the parameters in terms of which the Zeldovich effect has the simplest form. Analysis of our precision numerical calculations of the energy spectrum for a hydrogen atom in a constant magnetic field indicates that the Zeldovich effect is observed in the spectrum of atomic levels for superstrong fields, B≳5×1011 G. Magnetic fields of such strength exist in neutron stars and, possibly, in magnetic white dwarfs. We set lower limits for the fields B min required for the manifestation of this effect. We discuss some of the properties of atomic states in a superstrong magnetic field, including their mean radii and quadrupole moments. We calculated the probabilities of electric dipole transitions between odd atomic levels and a deep ground level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. B. Zel’dovich, Fiz. Tverd. Tela (Leningrad) 1, 1637 (1959) [Sov. Phys. Solid State 1, 1497 (1959)]; Ya. B. Zel’dovich, Selected Works. Particles, Nuclei, Universe (Nauka, Moscow, 1985).

    Google Scholar 

  2. L. I. Schiff and H. Snyder, Phys. Rev. 55, 59 (1939).

    Article  ADS  Google Scholar 

  3. R. H. Garstang, Rep. Prog. Phys. 40, 105 (1977).

    Article  ADS  Google Scholar 

  4. M. A. Liberman and B. Johansson, Usp. Fiz. Nauk 165, 121 (1995) [Phys.-Usp. 38, 117 (1995)].

    Google Scholar 

  5. K. A. U. Lindgren and J. T. Virtamo, J. Phys. B 12, 3465 (1979); J. T. Virtamo and K. A. U. Lindgren, Phys. Lett. A 71, 329 (1979).

    Article  ADS  Google Scholar 

  6. G. Fonte, P. Falsaperla, G. Schiffrer, and D. Stanzial, Phys. Rev. A 41, 5807 (1990).

    Article  ADS  Google Scholar 

  7. S. P. Goldman and Z. Chen, Phys. Rev. Lett. 67, 1403 (1991).

    ADS  Google Scholar 

  8. Z. Chen and S. P. Goldman, Phys. Rev. A 45, 1722 (1992); Phys. Rev. A 48, 1107 (1993).

    ADS  Google Scholar 

  9. Jang-Haur Wang and Chen-Shiung Hsue, Phys. Rev. A 52, 4508 (1995).

    ADS  Google Scholar 

  10. D. Lai and E. E. Salpeter, Phys. Rev. A 53, 152 (1996).

    ADS  Google Scholar 

  11. Yu. P. Kravchenko, M. A. Liberman, and B. Johansson, Phys. Rev. A 54, 287 (1996).

    Article  ADS  Google Scholar 

  12. V. M. Weinberg, V. A. Gani, and A. E. Kudryavtsev, Zh. Éksp. Teor. Fiz. 113, 550 (1998) [JETP 86, 305 (1998)].

    Google Scholar 

  13. V. A. Gani, A. E. Kudryavtsev, V. A. Lensky, and V. M. Weinberg, Zh. Éksp. Teor. Fiz. 123, 457 (2003) [JETP 96, 402 (2003)].

    Google Scholar 

  14. A. Y. Potekhin and A. V. Turbiner, Phys. Rev. A 63, 065402 (2001).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 5th ed. (Fizmatlit, Moscow, 2002; Pergamon, New York, 1977).

    Google Scholar 

  16. H. Hasegawa and R. E. Howard, J. Phys. Chem. Solids 21, 179 (1961).

    Google Scholar 

  17. J. Schwinger, Phys. Rev. 82, 664 (1951).

    ADS  MATH  MathSciNet  Google Scholar 

  18. B. M. Karnakov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 73 (2003) [JETP Lett. 77, 68 (2003)].

    Google Scholar 

  19. V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 77, 79 (2003) [JETP Lett. 77, 74 (2003)].

    Google Scholar 

  20. Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953; Nauka, Moscow, 1965), Vol. 1.

    Google Scholar 

  21. V. M. Galitskii, B. M. Karnakov, and V. I. Kogan, Problems on Quantum Mechanics (Nauka, Moscow, 1992).

    Google Scholar 

  22. V. S. Popov, Zh. Éksp. Teor. Fiz. 60, 1228 (1971) [Sov. Phys. JETP 33, 665 (1971)].

    Google Scholar 

  23. I. Pomeranchuk and Ya. Smorodinsky, J. Phys. (Moscow) 9, 97 (1945); I. Ya. Pomeranchuk, Collected Scientific Works (Nauka, Moscow, 1972), Vol. 2, p. 21.

    Google Scholar 

  24. K. M. Case, Phys. Rev. 80, 797 (1950).

    ADS  MATH  MathSciNet  Google Scholar 

  25. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1960), Vol. 2.

    Google Scholar 

  26. A. M. Perelomov and V. S. Popov, Teor. Mat. Fiz. 4, 48 (1970).

    Google Scholar 

  27. V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 11, 254 (1970) [JETP Lett. 11, 162 (1970)]; Yad. Fiz. 12, 429 (1970) [Sov. J. Nucl. Phys. 12, 235 (1970)].

    Google Scholar 

  28. Ya. B. Zel’dovich and V. S. Popov, Usp. Fiz. Nauk 105, 403 (1971) [Sov. Phys. Usp. 14, 673 (1971)].

    Google Scholar 

  29. A. E. Kudryavtsev, V. E. Markushin, and I. S. Shapiro, Zh. Éksp. Teor. Fiz. 74, 432 (1978) [Sov. Phys. JETP 47, 225 (1978)].

    Google Scholar 

  30. H. van Haeringen, C. V. M. van der Mee, and R. van Wageningen, J. Math. Phys. 18, 941 (1977).

    ADS  Google Scholar 

  31. H. van Haeringen and L. P. Kok, Phys. Rev. C 24, 1827 (1981).

    ADS  MathSciNet  Google Scholar 

  32. A. M. Badalyan, L. P. Kok, M. I. Polikarpov, and Yu. A. Simonov, Phys. Rep. 82, 31 (1982).

    Article  ADS  Google Scholar 

  33. L. P. Kok, J. W. de Maag, H. H. Brouwer, and H. van Haeringen, Phys. Rev. C 26, 2381 (1982).

    ADS  Google Scholar 

  34. D. A. Kirzhnits and F. M. Pen’kov, Zh. Éksp. Teor. Fiz. 82, 657 (1982) [Sov. Phys. JETP 55, 393 (1982)].

    MathSciNet  Google Scholar 

  35. A. E. Kudryavtsev and V. S. Popov, Pis’ma Zh. Éksp. Teor. Fiz. 29, 311 (1979) [JETP Lett. 29, 280 (1979)].

    Google Scholar 

  36. T. L. Trueman, Nucl. Phys. 26, 57 (1961).

    Google Scholar 

  37. A. I. Nikishov and V. I. Ritus, Zh. Éksp. Teor. Fiz. 52, 223 (1967) [Sov. Phys. JETP 25, 145 (1967)].

    Google Scholar 

  38. B. M. Karnakov, V. D. Mur, and V. S. Popov, Dokl. Akad. Nauk SSSR 279, 345 (1984) [Sov. Phys. Dokl. 29, 938 (1984)].

    Google Scholar 

  39. B. M. Karnakov, A. E. Kudravtsev, V. D. Mur, and V. S. Popov, Nuovo Cimento B 98, 63 (1987).

    Google Scholar 

  40. B. M. Karnakov, A. E. Kudryavtsev, V. D. Mur, and V. S. Popov, Zh. Éksp. Teor. Fiz. 94, 65 (1988) [Sov. Phys. JETP 67, 1333 (1988)].

    Google Scholar 

  41. V. S. Popov, A. E. Kudryavtsev, and V. D. Mur, Zh. Éksp. Teor. Fiz. 77, 1727 (1979) [Sov. Phys. JETP 50, 865 (1979)]; Zh. Éksp. Teor. Fiz. 80, 1271 (1981) [Sov. Phys. JETP 53, 650 (1981)].

    Google Scholar 

  42. M. Izycki et al., Z. Phys. A 297, 1 (1980).

    Google Scholar 

  43. V. S. Popov, in Proceedings of International Conference on High Energy Nuclear Physics, Hungary (1987), p. 257; Preprint No. 136, ITEP (Inst. of Theoretical and Experimental Physics, Moscow, 1987).

  44. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics, 2nd ed. (Nauka, Moscow, 1971; Israel Program for Scientific Translations, Jerusalem, 1966).

    Google Scholar 

  45. D. R. Hartree, Proc. Cambridge Philos. Soc. 24, 89 (1927); The Calculation of Atomic Structures (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1960).

    Google Scholar 

  46. R. Loudon, Am. J. Phys. 27, 649 (1959).

    Article  Google Scholar 

  47. V. A. Fock, Z. Phys. 98, 145 (1935).

    MATH  Google Scholar 

  48. V. Bargmann, Z. Phys. 99, 576 (1935).

    Google Scholar 

  49. B. B. Kadomtsev, Zh. Éksp. Teor. Fiz. 58, 1765 (1970) [Sov. Phys. JETP 31, 945 (1970)].

    Google Scholar 

  50. Yu. E. Lozovik and A. V. Klyuchnik, Phys. Lett. A 66, 282 (1978).

    Article  ADS  Google Scholar 

  51. V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Relativistic Quantum Theory (Nauka, Moscow, 1968; Pergamon Press, Oxford, 1971), Vol. 1.

    Google Scholar 

  52. O. Dumbarais, R. Kock, J. J. de Swart, and P. Kroll, Nucl. Phys. B 216, 277 (1983).

    ADS  Google Scholar 

  53. H. A. Bethe, Phys. Rev. 76, 38 (1949).

    ADS  MATH  Google Scholar 

  54. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  55. V. D. Mur, A. E. Kudryavtsev, and V. S. Popov, Yad. Fiz. 37, 1417 (1983) [Sov. J. Nucl. Phys. 37, 844 (1983)].

    Google Scholar 

  56. R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 196 (1960).

    MathSciNet  Google Scholar 

  57. D. Grasso and H. Rubinstein, Phys. Rep. 348, 163 (2001).

    Article  ADS  Google Scholar 

  58. I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Fizmatgiz, Moscow, 1962; Academic, New York, 1980).

    Google Scholar 

  59. L. Benassi, V. Grecchi, E. Harrell, and B. Simon, Phys. Rev. Lett. 42, 704 (1979); Phys. Rev. Lett. 42, 1430 (1979).

    ADS  Google Scholar 

  60. D. I. Kazakov and V. S. Popov, Zh. Éksp. Teor. Fiz. 122, 675 (2002) [JETP 95, 581 (2002)]; Pis’ma Zh. Éksp. Teor. Fiz. 77, 547 (2003) [JETP Lett. 77, 453 (2003)].

    Google Scholar 

  61. S. P. Alliluev, Zh. Éksp. Teor. Fiz. 33, 200 (1957) [Sov. Phys. JETP 6, 156 (1957)].

    MATH  Google Scholar 

  62. G. Dyerdi and J. Revai, Zh. Éksp. Teor. Fiz. 48, 1445 (1965) [Sov. Phys. JETP 21, 967 (1965)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 5, 2003, pp. 996–1022.

Original Russian Text Copyright © 2003 by Karnakov, Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karnakov, B.M., Popov, V.S. A hydrogen atom in a superstrong magnetic field and the Zeldovich effect. J. Exp. Theor. Phys. 97, 890–914 (2003). https://doi.org/10.1134/1.1633946

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1633946

Keywords

Navigation