Skip to main content
Log in

Controlling the parameters of short-wavelength radiation pulses using the interference of transitions to a continuum

  • Physical and Quantum Optics
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Specific features of the propagation of light pulses with frequency lying in the range of autoionization resonances of the medium are analyzed. It is shown that the interference nature of the autoionization spectra makes it possible to combine a strong frequency dispersion of the refractive index with small absorption when the radiation frequency approaches the spectral range of the "transparency window" of an isolated resonance or of a series of overlapped autoionization resonances. This allows one to control the time delay of the pulses and their group velocity. Depending on the parameters of the medium, the pulse group velocity may be maximally reduced by a factor of 104–105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Nauka, Moscow, 1967; Pergamon Press, Oxford, 1970).

    Google Scholar 

  2. V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons, 2nd ed. (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  3. G. N. Vinokurov and V. P. Zhulin, Opt. Spektrosk. 58, 211 (1985) [Opt. Spectrosc. 58, 128 (1985)].

    Google Scholar 

  4. S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, 29 (1992).

    Article  ADS  Google Scholar 

  5. S. G. Rautian, G. I. Smirnov, and A. M. Shalagin, Nonlinear Resonances in Atomic and Molecular Spectra (Nauka, Novosibirsk, 1979).

    Google Scholar 

  6. V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy of Superhigh Resolution (Nauka, Moscow, 1990).

    Google Scholar 

  7. Yu. I. Geller and N. A. Popov, Laser Induction of Nonlinear Resonances in Continuous Spectra (Nauka, Novosibirsk, 1981).

    Google Scholar 

  8. S. E. Harris, Phys. Today 50(7), 36 (1997).

    Article  Google Scholar 

  9. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).

    Article  ADS  Google Scholar 

  10. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).

    Article  ADS  Google Scholar 

  11. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al., Phys. Rev. Lett. 82, 5229 (1999).

    Article  ADS  Google Scholar 

  12. O. Kocharovskaya, Yu. Rostovtsev, and M. O. Scully, Phys. Rev. Lett. 86, 628 (2001).

    Article  ADS  Google Scholar 

  13. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, et al., Phys. Rev. Lett. 88, 023602 (2002).

    Google Scholar 

  14. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).

    Article  ADS  Google Scholar 

  15. S. E. Harris and L. V. Hau, Phys. Rev. Lett. 82, 4611 (1999).

    Article  ADS  Google Scholar 

  16. M. D. Lukin and A. Imamoglu, Phys. Rev. Lett. 84, 1419 (2000).

    Article  ADS  Google Scholar 

  17. C. Liu, Z. Dutton, C. M. Behroozi, and L. V. Hau, Nature 409, 490 (2001).

    Article  ADS  Google Scholar 

  18. D. F. Phillips, A. Fleischhauer, A. Mair, et al., Phys. Rev. Lett. 86, 783 (2001).

    Article  ADS  Google Scholar 

  19. U. Fano and J. W. Cooper, Rev. Mod. Phys. 40, 441 (1968).

    Article  ADS  Google Scholar 

  20. M. G. Kozlov, Absorption Spectra of Metal Vapors in the UV Region (Nauka, Moscow, 1981).

    Google Scholar 

  21. L. A. Vainshtein, Usp. Fiz. Nauk 118, 339 (1976) [Sov. Phys. Usp. 19, 189 (1976)].

    Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory, 4th ed. (Nauka, Moscow, 1989; Pergamon, New York, 1977).

    Google Scholar 

  23. M. E. Perel’man, Kinetic Quantum Theory of Optical Dispersion (Metsniereba, Tbilisi, 1989).

    Google Scholar 

  24. A. Nitzan, Mol. Phys. 27, 65 (1974).

    Article  ADS  Google Scholar 

  25. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964; Mir, Moscow, 1967).

    MATH  Google Scholar 

  26. F. T. Smith, Phys. Rev. 118, 349 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  27. I. I. Sobel’man, Usp. Fiz. Nauk 172, 85 (2002).

    Article  Google Scholar 

  28. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon, Oxford, 1980; Nauka, Moscow, 1973).

    Google Scholar 

  29. B. M. Smirnov, Atomic Collisions and Elementary Processes in Plasma (Atomizdat, Moscow, 1968).

    Google Scholar 

  30. P. R. Woodruff and J. A. R. Samson, Phys. Rev. A 25, 848 (1982).

    Article  ADS  Google Scholar 

  31. S. M. Burkov and S. I. Strakhova, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. 25(3), 42 (1984).

    Google Scholar 

  32. T. M. Luke, J. Phys. B 15, 1217 (1982).

    Article  ADS  Google Scholar 

  33. H. W. Wolf, K. Radler, B. Sonntay, and R. Haensel, Z. Phys. 257, 353 (1972).

    Article  ADS  Google Scholar 

  34. M. Ya. Amusia and A. S. Kheifets, Phys. Lett. 82, 407 (1981).

    Article  Google Scholar 

  35. V. S. Letokhov, Laser Photoionization Spectroscopy (Nauka, Moscow, 1987), p. 320.

    Google Scholar 

  36. G. I. Bekov, E. P. Vidolova-Angelova, L. N. Ivanov, et al., Zh. Éksp. Teor. Fiz. 80, 866 (1981) [Sov. Phys. JETP 53, 441 (1981)].

    Google Scholar 

  37. E. Yu. Perlin, Opt. Spektrosk. 41, 263 (1976) [Opt. Spectrosc. 41, 153 (1976)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Optika i Spektroskopiya, Vol. 95, No. 4, 2003, pp. 657–665.

Original Russian Text Copyright © 2003 by Geller, Sovkov, Khakim’yanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geller, Y.I., Sovkov, D.E. & Khakim’yanov, A.T. Controlling the parameters of short-wavelength radiation pulses using the interference of transitions to a continuum. Opt. Spectrosc. 95, 613–621 (2003). https://doi.org/10.1134/1.1621447

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1621447

Keywords

Navigation