Skip to main content
Log in

Coagulation rate of dust grains in a low-temperature plasma

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The mechanisms for the interaction between dust grains in a low-temperature plasma are analyzed theoretically with the aim of describing the grain coagulation process. It is shown that the experimentally observed coagulation process cannot be described by taking into account only electrostatic interaction between the grains. A theoretical model is proposed that describes the interaction between dust grains by accounting for the redistribution of the ion fluxes over the grain surfaces under the action of the electrostatic field of a neighboring grain. The model is employed to analytically calculate the rate constant for the dust grain coagulation. The theory developed is used to explain for the first time the nature of the experimentally observed coagulation threshold and to estimate the critical grain size above which the grains stop growing by the deposition from a gaseous phase and start to coagulate. The applicability of the model proposed to a quantitative description of the coagulation dynamics is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33, 4208 (1994).

    Google Scholar 

  2. A. Garscadden, Pure Appl. Chem. 66, 1319 (1994).

    Google Scholar 

  3. Y. Watanabe, M. Shiratani, H. Kawasaki, et al., J. Vac. Sci. Technol. A 14, 540 (1996).

    ADS  Google Scholar 

  4. H. Kawasaki, J. Kida, K. Sakamoto, et al., J. Appl. Phys. 83, 5665 (1998).

    Article  ADS  Google Scholar 

  5. T. Fukuzava, S. Kushima, Y. Matsuoka, et al., J. Appl. Phys. 86, 3543 (1999).

    ADS  Google Scholar 

  6. A. Bouchoule, L. Boufendi, J. Hermann, et al., Pure Appl. Chem. 68, 1121 (1996).

    Google Scholar 

  7. M. Shiratani, S. Maeda, K. Koga, and Y. Watanbe, Jpn. J. Appl. Phys. 39, 287 (2000).

    Article  Google Scholar 

  8. V. A. Schweigert and I. V. Schweigert, J. Phys. D 29, 655 (1996).

    Article  ADS  Google Scholar 

  9. F. Y. Huang, H. H. Hwang, and M. J. Kushner, J. Vac. Sci. Technol. A 14, 562 (1996).

    ADS  Google Scholar 

  10. F. Y. Huang and M. J. Kushner, J. Appl. Phys. 81, 5960 (1997).

    ADS  Google Scholar 

  11. N. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    ADS  Google Scholar 

  12. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    ADS  Google Scholar 

  13. A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. A 191, 301 (1994).

    Article  ADS  Google Scholar 

  14. E. Wigner, Trans. Faraday Soc. 34, 678 (1938).

    Google Scholar 

  15. H. Ikezi, Phys. Fluids 29, 1764 (1986).

    Article  ADS  Google Scholar 

  16. D. Samsonov and J. Goree, J. Vac. Sci. Technol. A 17, 2835 (1999).

    Article  ADS  Google Scholar 

  17. D. Samsonov and J. Goree, Phys. Rev. E 59, 1047 (1999).

    Article  ADS  Google Scholar 

  18. G. E. Morfill, H. M. Thomas, U. Konopka, et al., Phys. Rev. Lett. 83, 1598 (1999).

    ADS  Google Scholar 

  19. K. Watanabe, K. Nishimura, and T. Sato, Advances in Dusty Plasmas (World Sci., Singapore, 1998).

    Google Scholar 

  20. M. Horanyi and C. K. Goerts, Astrophys. J. 361, 155 (1990).

    Article  ADS  Google Scholar 

  21. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  22. A. M. Ignatov, Fiz. Plazmy 22, 648 (1996) [Plasma Phys. Rep. 22, 585 (1996)].

    Google Scholar 

  23. A. M. Ignatov, Usp. Fiz. Nauk 171, 213 (2001) [Phys. Usp. 44, 199 (2001)].

    Google Scholar 

  24. Yu. A. Mankelevich, M. A. Olevanov, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 121, 1288 (2002) [JETP 94, 1106 (2002)].

    Google Scholar 

  25. R. A. Quinn and J. Goree, Phys. Plasmas 7, 3904 (2000).

    Article  ADS  Google Scholar 

  26. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 123, 503 (2003) [JETP 96, 444 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 10, 2003, pp. 51–60.

Original Russian Text Copyright © 2003 by Olevanov, Mankelevich, Rakhimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olevanov, M.A., Mankelevich, Y.A. & Rakhimova, T.V. Coagulation rate of dust grains in a low-temperature plasma. Tech. Phys. 48, 1270–1279 (2003). https://doi.org/10.1134/1.1620120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1620120

Keywords

Navigation