Skip to main content
Log in

From the Bose-Einstein to fermion condensation

  • Reviews
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The appearance of the fermion condensation, which can be compared to the Bose-Einstein condensation, in different Fermi liquids is considered; its properties are discussed; and a large amount of experimental evidence in favor of the existence of the fermion condensate (FC) is presented. We show that the appearance of FC is a signature of the fermion condensation quantum phase transition (FCQPT), which separates the regions of normal and strongly correlated liquids. Beyond the FCQPT point, the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other, FC, localized at the Fermi level. In the superconducting state, the quasiparticle dispersion in systems with FC can be represented by two straight lines, characterized by effective masses M *FC and M *L and intersecting near the binding energy E 0, which is of the order of the superconducting gap. The same quasiparticle picture and the energy scale E 0 persist in the normal state. We demonstrate that fermion systems with FC have features of a “quantum protectorate” and show that strongly correlated systems with FC, which exhibit large deviations from the Landau Fermi liquid behavior, can be driven into the Landau Fermi liquid by applying a small magnetic field B at low temperatures. Thus, the essence of strongly correlated electron liquids can be controlled by weak magnetic fields. A reentrance into the strongly correlated regime is observed if the magnetic field B decreases to zero, while the effective mass M* diverges as \(M^ * \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). The regime is restored at some temperature \(T^ * \propto \sqrt B \). The behavior of Fermi systems that approach FCQPT from the disordered phase is considered. This behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. We expect that FCQPT takes place in trapped Fermi gases and in low-density neutron matter, leading to stabilization of the matter by lowering its ground-state energy. When the system recedes from FCQPT, the effective mass becomes density independent and the system is suited perfectly to be conventional Landau Fermi liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. T. Belyaev, Zh. Éksp. Teor. Fiz. 34, 417 (1958) [Sov. Phys. JETP 7, 289 (1958)].

    MATH  Google Scholar 

  2. S. T. Belyaev, Zh. Éksp. Teor. Fiz. 34, 433 (1958) [Sov. Phys. JETP 7, 299 (1958)].

    MATH  Google Scholar 

  3. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)].

    Google Scholar 

  4. V. A. Khodel and V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 51, 488 (1990) [JETP Lett. 51, 553 (1990)].

    Google Scholar 

  5. G. E. Volovik, Pis'ma Zh. Éksp. Teor. Fiz. 53, 208 (1991) [JETP Lett. 53, 222 (1991)].

    Google Scholar 

  6. M. Ya. Amusia and V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 73, 268 (2001) [JETP Lett. 73, 232 (2001)]; Phys. Rev. B 63, 224507 (2001); V. R. Shaginyan, Physica B 312–313, 413 (2002).

    Google Scholar 

  7. V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).

    Article  ADS  Google Scholar 

  8. V. A. Khodel, V. R. Shaginyan, and M. V. Zverev, Pis'ma Zh. Éksp. Teor. Fiz. 65, 242 (1997) [JETP Lett. 65, 253 (1997)].

    Google Scholar 

  9. J. Dukelsky, V. A. Khodel, P. Schuck, and V. R. Shaginyan, Z. Phys. B 102, 245 (1997); V. A. Khodel and V. R. Shaginyan, Condens. Matter Theor. 12, 222 (1997).

    Article  Google Scholar 

  10. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  11. V. R. Shaginyan, Phys. Lett. A 249, 237 (1998).

    Article  ADS  Google Scholar 

  12. V. A. Khodel, J. W. Clark, and V. R. Shaginyan, Solid State Commun. 96, 353 (1995).

    Article  Google Scholar 

  13. S. A. Artamonov and V. R. Shaginyan, Zh. Éksp. Teor. Fiz. 119, 331 (2001) [JETP 92, 287 (2001)].

    Google Scholar 

  14. R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. U.S.A. 97, 28 (2000).

    MathSciNet  ADS  Google Scholar 

  15. P. W. Anderson, cond-mat/0007185; cond-mat/0007287.

  16. P. V. Bogdanov et al., Phys. Rev. Lett. 85, 2581 (2000).

    Article  ADS  Google Scholar 

  17. A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001).

    ADS  Google Scholar 

  18. T. Valla et al., Science 285, 2110 (1999); T. Valla et al., Phys. Rev. Lett. 85, 828 (2000).

    Article  Google Scholar 

  19. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

    Google Scholar 

  20. G. Grüner, Density Waves in Solids (Addison-Wesley, Reading, 1994).

    Google Scholar 

  21. D. R. Tilley and J. Tilley, Superfluidity and Superconductivity (Bristol, Hilger, 1985).

    Google Scholar 

  22. V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 68, 491 (1998).

    Google Scholar 

  23. M. Ya. Amusia and V. R. Shaginyan, Phys. Lett. A 298, 193 (2002).

    Article  ADS  Google Scholar 

  24. M. Kugler et al., Phys. Rev. Lett. 86, 4911 (2001).

    Article  ADS  Google Scholar 

  25. A. A. Abrikosov, Phys. Rev. B 52, R15738 (1995); cond-mat/9912394.

    ADS  Google Scholar 

  26. M. Ya. Amusia, S. A. Artamonov, and V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 74, 396 (2001).

    Google Scholar 

  27. N.-C. Yeh et al., Phys. Rev. Lett. 87, 087003 (2001).

  28. A. Biswas et al., Phys. Rev. Lett. 88, 207004 (2002).

  29. J. A. Skinta et al., Phys. Rev. Lett. 88, 207005 (2002).

  30. J. A. Skinta et al., Phys. Rev. Lett. 88, 207003 (2002).

  31. C.-T. Chen et al., Phys. Rev. Lett. 88, 227002 (2002).

  32. C. M. Varma, Z. Nussinov, and W. Wim van Saarloos, Phys. Rep. 361, 267 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Ya. Amusia and V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 76, 774 (2002).

    Google Scholar 

  34. N. Miyakawa et al., Phys. Rev. Lett. 83, 1018 (1999).

    Article  ADS  Google Scholar 

  35. D. L. Feng et al., cond-mat/0107073.

  36. D. S. Dessau et al., Phys. Rev. Lett. 66, 2160 (1991).

    Article  ADS  Google Scholar 

  37. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Benjamin, Reading, 1977).

    Google Scholar 

  38. Z. Yusof et al., Phys. Rev. Lett. 88, 167006 (2002); cond-mat/0104367.

    Google Scholar 

  39. S. A. Artamonov, V. R. Shaginyan, and Yu. G. Pogorelov, JETP Lett. 68, 942 (1998).

    Article  ADS  Google Scholar 

  40. M. de Llano and J. P. Vary, Phys. Rev. C 19, 1083 (1979); M. de Llano, A. Plastino, and J. G. Zabolitsky, Phys. Rev. C 20, 2418 (1979).

    ADS  Google Scholar 

  41. M. V. Zverev and M. Baldo, cond-mat/9807324.

  42. K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).

    Article  Google Scholar 

  43. V. A. Khodel and P. Schuck, Z. Phys. B 104, 505 (1997).

    Article  Google Scholar 

  44. P. Gegenwart et al., Phys. Rev. Lett. 89, 056402 (2002); cond-mat/0207570.

    Google Scholar 

  45. K. Ishida et al., Phys. Rev. Lett. 89, 107202 (2002).

  46. P. Coleman et al., J. Phys.: Condens. Matter 13, R723 (2001); P. Coleman, cond-mat/0206003.

    Article  ADS  Google Scholar 

  47. V. R. Shaginyan, cond-mat/0208568; cond-mat/0212624; cond-mat/0301019; Pis'ma Zh. Éksp. Teor. Fiz. 77, 104 (2003); Pis'ma Zh. Éksp. Teor. Fiz. (in press).

    Google Scholar 

  48. Yu. G. Pogorelov and V. R. Shaginyan, Pis'ma Zh. Éksp. Teor. Fiz. 76, 614 (2002).

    Google Scholar 

  49. T. Takahashi et al., cond-mat/0212238.

  50. C. Proust et al., Phys. Rev. Lett. 89, 147003 (2002).

  51. A. P. Mackenzie et al., Phys. Rev. B 53, 5848 (1996).

    Article  ADS  Google Scholar 

  52. K.-D. Morhard et al., Phys. Rev. B 53, 2658 (1996).

    Article  ADS  Google Scholar 

  53. A. Casey et al., J. Low Temp. Phys. 113, 293 (1998).

    Google Scholar 

  54. M. Pfitzner and P. Wölfe, Phys. Rev. B 33, 2003 (1986).

    Article  ADS  Google Scholar 

  55. S. Inouye et al., Nature 392, 151 (1998).

    Google Scholar 

  56. M. Ya. Amusia, A. Z. Msezane, and V. R. Shaginyan, Phys. Lett. A 293, 205 (2002).

    Article  ADS  Google Scholar 

  57. L. D. Landau and E. M. Lifshitz, Statistical Physics (Addison-Wesley, Reading, 1970), Part 1.

    Google Scholar 

  58. M. Ya. Amusia and V. R. Shaginyan, Eur. Phys. J. A 8, 77 (2000).

    Article  ADS  Google Scholar 

  59. S. Nakamae et al., cond-mat/0212283.

  60. J. Paglione et al., cond-mat/0212502.

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 66, No. 10, 2003, pp. 1850–1867.

Original English Text Copyright © 2003 by Amusia, Msezane, Shaginyan.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amusia, M.Y., Msezane, A.Z. & Shaginyan, V.R. From the Bose-Einstein to fermion condensation. Phys. Atom. Nuclei 66, 1802–1819 (2003). https://doi.org/10.1134/1.1619493

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1619493

Keywords

Navigation