Skip to main content
Log in

Scaling laws for the spatial distributions of the plasma parameters in the positive column of a dc oxygen discharge

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Comprehensive self-consistent simulations of the positive column plasma of a dc oxygen discharge are performed with the help of commercial CFDRC software (http://www.cfdrc.com/~cfdplasma), which enables one to carry out computations in an arbitrary 3D geometry using fluid equations for heavy components and a kinetic equation for electrons. The main scaling laws for the spatial distributions of charged particles are determined. These scaling laws are found to be quite different in the parameter ranges that are dominated by different physical processes. At low pressures, both the electrons and negative ions in the inner discharge region obey a Boltzmann distribution; as a result, a flat profile of the electron density and a parabolic profile of the ion density are established there. In the ion balance, transport processes prevail, so that ion heating in an electric field dramatically affects the spatial distribution of the charged particles. At elevated pressures, the volume processes prevail in the balance of negative ions and the profiles of the charged particle densities in the inner region turn out to be similar to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lieberman and A. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

    Google Scholar 

  2. H. J. Oskam, Philips Res. Rep. 13, 335 (1958).

    Google Scholar 

  3. M. V. Konjukov, Zh. Éksp. Teor. Fiz. 34, 908 (1958) [Sov. Phys. JETP 7, 629 (1958)]; Zh. Éksp. Teor. Fiz. 34, 1634 (1958) [Sov. Phys. JETP 7, 1122 (1958)].

    Google Scholar 

  4. J. B. Tompson, Proc. Phys. Soc. (London) 73, 818 (1959).

    Google Scholar 

  5. H. Sabadil, Beitr. Plasmaphys. 13, 235 (1973).

    Google Scholar 

  6. H. S. W. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976; Mir, Moscow, 1979).

    Google Scholar 

  7. P. D. Edgeley and A. von Engel, Proc. R. Soc. London, Ser. A 370, 375 (1980).

    ADS  Google Scholar 

  8. G. L. Rogoff, J. Phys. D 18, 1533 (1985).

    Article  ADS  Google Scholar 

  9. A. V. Phelps, J. Res. Natl. Inst. Stand. Technol. 95, 407 (1990).

    Google Scholar 

  10. L. D. Tsendin, Zh. Tekh. Fiz. 55, 2318 (1985) [Sov. Phys. Tech. Phys. 30, 1377 (1985)]; Zh. Tekh. Fiz. 59, 21 (1989) [Sov. Phys. Tech. Phys. 34, 11 (1989)].

    Google Scholar 

  11. C. M. Ferreira, G. Gousset, and M. Touzeau, J. Phys. D 21, 1403 (1988).

    Article  ADS  Google Scholar 

  12. P. R. Daniels, R. N. Franklin, and J. Snell, J. Phys. D 22, 780 (1989); J. Phys. D 23, 823 (1990); J. Phys. D 26, 1636 (1993).

    Article  ADS  Google Scholar 

  13. A. J. Lichtenberg, V. Vahedi, M. A. Lieberman, et al., J. Appl. Phys. 75, 2339 (1994).

    Article  ADS  Google Scholar 

  14. A. J. Lichtenberg, I. G. Kouznetsov, T. D. Lee, et al., Plasma Sources Sci. Technol. 6, 437 (1997).

    Article  ADS  Google Scholar 

  15. I. G. Kouznetsov, A. J. Lichtenberg, and M. A. Lieberman, J. Appl. Phys. 86, 4142 (1999).

    Article  ADS  Google Scholar 

  16. R. N. Franklin, Plasma Sources Sci. Technol. 11, 31 (2002).

    Article  ADS  Google Scholar 

  17. R. N. Franklin and J. Snell, J. Phys. D 32, 2190 (1999).

    ADS  Google Scholar 

  18. R. N. Franklin, J. Plasma Phys. 64, 131 (2000).

    Article  ADS  Google Scholar 

  19. S. V. Berezhnoj, C. B. Shin, U. Buddemeier, and I. Kaganovich, Appl. Phys. Lett. 77, 800 (2000).

    Article  ADS  Google Scholar 

  20. V. A. Feoktistov, V. V. Ivanov, A. M. Popov, et al., J. Phys. D 30, 423 (1997).

    Article  ADS  Google Scholar 

  21. V. V. Ivanov, K. S. Klopovsky, D. V. Lopaev, et al., IEEE Trans. Plasma Sci. 27, 1279 (1999).

    Article  Google Scholar 

  22. V. V. Ivanov, K. S. Klopovsky, D. V. Lopaev, et al., Fiz. Plazmy 26, 1038 (2000) [Plasma Phys. Rep. 26, 972 (2000)].

    Google Scholar 

  23. A. Kono, Appl. Surf. Sci. 192, 115 (2002).

    Article  Google Scholar 

  24. E. A. Bogdanov and A. A. Kudryavtsev, Pis’ma Zh. Tekh. Fiz. 27(21), 36 (2001) [Tech. Phys. Lett. 27, 905 (2001)].

    Google Scholar 

  25. E. A. Bogdanov, V. I. Kolobov, A. A. Kudryavtsev, and L. D. Tsendin, Zh. Tekh. Fiz. 72(8), 13 (2002) [Tech. Phys. 47, 946 (2002)].

    Google Scholar 

  26. A. V. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Énergoatomizdat, Moscow, 1988; Taylor & Francis, London, 2001).

    Google Scholar 

  27. E. A. Bogdanov, A. A. Kudryavtsev, L. D. Tsendin, et al., Zh. Tekh. Fiz. 73(8), 45 (2003) [Tech. Phys. 48, 983 (2003)].

    Google Scholar 

  28. http://www.cfdrc.com/~cfdplasma

  29. E. W. McDaniel and E. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973; Mir, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 9, 2003, pp. 70–77.

Original Russian Text Copyright © 2003 by Bogdanov, A. Kudryavtsev, Tsendin, Arslanbekov, Kolobov, V. Kudryavtsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, E.A., Kudryavtsev, A.A., Tsendin, L.D. et al. Scaling laws for the spatial distributions of the plasma parameters in the positive column of a dc oxygen discharge. Tech. Phys. 48, 1151–1158 (2003). https://doi.org/10.1134/1.1611900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1611900

Keywords

Navigation