Skip to main content
Log in

Influence of accretion-disk models on the structure of the Iron Κα line

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Broad iron Κα emission with a characteristic two-peaked profile is observed in most Seyfert galaxies in the X-ray. We have calculated the profiles of such lines emitted by an accretion disk in a Schwartzschild metric. The dependence of the temperature distribution in the disk on the line shape is demonstrated. All the calculations include general relativistic effects. The disk material is assumed to move in circular geodesics in the equatorial plane. The line profile is extremely complex, even in a traditional model for the radial temperature distribution, complicating interpretation of the observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Fabian, K. Nandra, C. S. Reynolds, et al., Mon. Not. R. Astron. Soc. 277, L11 (1995).

    ADS  Google Scholar 

  2. Y. Tanaka, K. Nandra, A. C. Fabian, et al., Nature 375, 659 (1995).

    ADS  Google Scholar 

  3. K. Nandra, I. M. George, R. F. Mushotzky, et al., Astrophys. J. 476, 70 (1997).

    Article  ADS  Google Scholar 

  4. K. Nandra, I. M. George, R. F. Mushotzky, et al., Astrophys. J. 477, 602 (1997).

    Article  ADS  Google Scholar 

  5. A. Malizia, L. Bassani, J. B. Stephen, et al., Astrophys. J., Suppl. Ser. 113, 311 (1997).

    Article  ADS  Google Scholar 

  6. R. M. Sambruna, I. M. George, R. F. Mushotsky, et al., Astrophys. J. 495, 749 (1998).

    Article  ADS  Google Scholar 

  7. T. Yaqoob, I. M. George, K. Nandra, et al., Astrophys. J. 546, 759 (2001).

    Article  ADS  Google Scholar 

  8. P. M. Ogle, H. L. Marshall, J. C. Lee, et al., Astrophys. J. 545, L81 (2000).

    Article  ADS  Google Scholar 

  9. T. Yaqoob, B. McKernan, A. Ptak, et al., Astrophys. J. 490, L25 (1997).

    Article  ADS  Google Scholar 

  10. K. A. Weawer, J. H. Krolik, and E. A. Pier, Astrophys. J. 498, 213 (1998); astro-ph/9712035.

    ADS  Google Scholar 

  11. T. Yaqoob, P. J. Serlemitsos, T. J. Turner, et al., Astrophys. J. 470, L27 (1996).

    Article  ADS  Google Scholar 

  12. J. W. Sulentic, P. Marziani, and M. Calvani, Astrophys. J. 497, L65 (1998).

    Article  ADS  Google Scholar 

  13. J. X. Wang, Y. Y. Zhou, H. G. Xu, et al., Astrophys. J. 516, L65 (1999).

    Article  ADS  Google Scholar 

  14. B. Paul, P. C. Agrawal, A. R. Rao, et al., Astrophys. J. 492, L63 (1998).

    Article  ADS  Google Scholar 

  15. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  16. N. I. Shakura, Astron. Zh. 49, 921 (1972) [Sov. Astron. 16, 756 (1972)].

    ADS  Google Scholar 

  17. I. D. Novikov and K. S. Thorne, in Black Holes, Eds. by C. De Witt and B. S. De Witt (Gordon & Breach, NewYork, 1973), p. 334.

    Google Scholar 

  18. G. V. Lipunova and N. I. Shakura, Astron. Rep. 46, 366 (2002).

    Article  ADS  Google Scholar 

  19. R. V. E. Lovelace, W. I. Newman, and M. M. Romanova, Astrophys. J. 484, 628 (1997).

    Article  ADS  Google Scholar 

  20. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, et al., Astrophys. J. 500, 703 (1998).

    Article  ADS  Google Scholar 

  21. J. W. Sulentic, P. Marziani, T. Zwitter, et al., Astrophys. J. 501, 54 (1998).

    Article  ADS  Google Scholar 

  22. G. Matt, G. C. Perova, L. Piro, and L. Stella, Astron. Astrophys. 257, 63 (1992).

    ADS  Google Scholar 

  23. B. C. Bromley, K. Chen, and W. A. Miller, Astrophys. J. 475, 57 (1997).

    ADS  Google Scholar 

  24. W. Cui, S. N. Zhang, and W. Chen, Astrophys. J. 492, L53 (1998).

    Article  ADS  Google Scholar 

  25. V. I. Pariev and B. C. Bromley, in Proceedings of the 8th Annual October Astrophysics Conference in Maryland (1997); astro-ph/9711214.

  26. V. I. Pariev and B. C. Bromley, Astrophys. J. 508, 590 (1998).

    Article  ADS  Google Scholar 

  27. B. C. Bromley, W. A. Miller, and V. I. Pariev, Nature 391, 54 (1998).

    Article  ADS  Google Scholar 

  28. R. Keppens, F. Casse, and J. P. Goedbloed, Astrophys. J. 569, L121 (2002).

    Article  ADS  Google Scholar 

  29. A. F. Zakharov, Preprint MPA No. 755 (1993).

  30. A. F. Zakharov, Mon. Not. R. Astron. Soc. 269, 283 (1994).

    ADS  Google Scholar 

  31. A. F. Zakharov, in 17th Texas Symposium on Relativistic Astropysics, Annals of the The New York Academy of Sciences 759, 550 (1995).

    ADS  Google Scholar 

  32. A. F. Zakharov and S. V. Repin, Astron. Zh. 76, 803 (1999) [Astron. Rep. 43, 705 (1999)].

    Google Scholar 

  33. A. F. Zakharov and S. V. Repin, Astron. Rep. 46, 360 (2002).

    Article  ADS  Google Scholar 

  34. A. F. Zakharov and S. V. Repin, Adv. Space Res. (2003, in press).

  35. A. F. Zakharov, N. S. Kardashev, V. N. Lukash, and S. V. Repin, Mon. Not. R. Astron. Soc. (2003, in press); astro-ph/0212008.

  36. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  37. L. D. Landau and E. M. Lifshits, Field Theory (Nauka, Moscow, 1998).

    Google Scholar 

  38. B. Carter, Phys. Rev. D 174, 1559 (1968).

    ADS  MATH  Google Scholar 

  39. S. Chandrasekhar, Mathematical Theory of Black Holes (Clarendon Press, Oxford, 1983).

    Google Scholar 

  40. A. F. Zakharov, Zh. Éksp. Teor. Fiz. 91, 3 (1986) [Sov. Phys. JETP 64, 1 (1986)].

    ADS  Google Scholar 

  41. A. F. Zakharov, Zh. Éksp. Teor. Fiz. 95, 385 (1989) [Sov. Phys. JETP 68, 217 (1989)].

    Google Scholar 

  42. A. F. Zakharov, Astron. Zh. 68, 58 (1991) [Sov. Astron. 35, 30 (1991)].

    ADS  Google Scholar 

  43. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice Hall, Englewood Cliffs, New York, 1971).

    Google Scholar 

  44. K. L. Hiebert and L. F. Shampine, Implicitly Defined Output Points for Solutions of ODE-s (Sandia report sand80-0180, February, 1980).

  45. A. C. Hindmarsh, ODEpack, a Systematized Collection of ODE Solvers In Scientific Computing, Ed. by R. S. Stepleman et al. (North-Holland, Amsterdam, 1983), p. 55.

    Google Scholar 

  46. L. R. Petzold, SIAM J. Sci. Stat. Comput. 4, 136 (1983).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 80, No. 9, 2003, pp. 798–804.

Original Russian Text Copyright © 2003 by Zakharov, Repin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakharov, A.F., Repin, S.V. Influence of accretion-disk models on the structure of the Iron Κα line. Astron. Rep. 47, 733–739 (2003). https://doi.org/10.1134/1.1611214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1611214

Keywords

Navigation