Skip to main content
Log in

Drift stabilization of internal resistive-wall modes in tokamaks

  • Plasma Instability
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The problem of drift stabilization of the internal resistive-wall modes (RWMs) in tokamaks is theoretically investigated. The basic assumption of the model is that, when the drift effects are neglected, these modes are unstable in the absence of a conducting wall and stable in the presence of a close-fitting perfectly conducting wall. In the former case, the instability condition is expressed as Δ′>0, where Δ′ is the matching parameter calculated under the assumption that the wall is removed to infinity. In the latter case, one has Δ W <0, where Δ W is the external matching parameter of tearing modes calculated assuming a perfectly conducting wall at the plasma boundary. In the case with a resistive wall, the relevant parameter can be either Δ′ or Δ W , depending on whether the value of the dimensionless parameter ωτs/2m is small or large, respectively (here ω is the mode frequency, τs is the resistive time constant of the wall, and m is the poloidal mode number). In the presence of drift effects, the mode frequency ω is approximately equal to the electron drift frequency, ω≈ω*e . The value of the parameter ω*e τs/2m, which therefore determines the behavior of internal RWMs, is estimated for several existing tokamaks, namely, AUG (ASDEX-Upgrade), DIII-D, JET, TFTR, and JT-60U, as well as for the projected ITER-FEAT. It is shown that, although drift effects do not stabilize internal RWMs in current devices, they should be efficient in suppressing these modes in reactor-grade tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ITER Physics Expert Group on Disruptions, Plasma Control, and MHD and ITER Physics Basis Editors, Nucl. Fusion 39, 2251 (1999).

    Google Scholar 

  2. L. E. Zakharov and S. V. Putvinskii, Fiz. Plazmy 13, 118 (1987) [Sov. J. Plasma Phys. 13, 68 (1987)].

    Google Scholar 

  3. A. Bondeson and D. J. Ward, Phys. Rev. Lett. 72, 2709 (1994).

    Article  ADS  Google Scholar 

  4. A. B. Mikhailovskii and B. N. Kuvshinov, Fiz. Plazmy 21, 835 (1995) [Plasma Phys. Rep. 21, 789 (1995)].

    Google Scholar 

  5. B. N. Kuvshinov and A. B. Mikhailovskii, Fiz. Plazmy 22, 490 (1996) [Plasma Phys. Rep. 22, 446 (1996)].

    Google Scholar 

  6. A. B. Mikhailovskii, Instabilities in a Confined Plasma (Institute of Physics, Bristol, 1998).

    Google Scholar 

  7. A. D. Turnbull, T. S. Tailor, E. J. Straight, et al., Plasma Phys. Controlled Nucl. Fusion Res. 1, 705 (1995).

    Google Scholar 

  8. V. D. Pustovitov, Fiz. Plazmy 29 (in press).

  9. J. M. Finn, Phys. Plasmas 2, 198 (1995).

    ADS  MathSciNet  Google Scholar 

  10. H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).

    Google Scholar 

  11. P. H. Rutherford, in Proceedings of the Course and Workshop on Basic Physical Processes of Toroidal Fusion Plasmas, Varenna, 1985, Vol. 2, p. 531.

  12. B. Coppi, Phys. Fluids 8, 2273 (1965).

    Article  Google Scholar 

  13. J. M. Finn, Phys. Plasmas 5, 3595 (1998).

    ADS  Google Scholar 

  14. S. V. Konovalov, A. B. Mikhailovskii, M. S. Shirokov, and V. S. Tsypin, Plasma Phys. Controlled Fusion 44, 51 (2002).

    Article  ADS  Google Scholar 

  15. S. V. Konovalov, A. B. Mikhailovskii, M. S. Shirokov, and V. S. Tsypin, Phys. Plasmas 9, 4596 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. A. B. Mikhailovskii and B. N. Kuvshinov, Fiz. Plazmy 21, 849 (1995) [Plasma Phys. Rep. 21, 802 (1995)].

    Google Scholar 

  17. A. B. Mikhailovskii and B. N. Kuvshinov, Phys. Lett. A 209, 83 (1995).

    Article  ADS  Google Scholar 

  18. A. Bondeson and M. S. Chu, Phys. Plasmas 3, 3013 (1996).

    Article  ADS  Google Scholar 

  19. B. N. Kuvshinov and A. B. Mikhailovskii, Fiz. Plazmy 24, 675 (1998) [Plasma Phys. Rep. 24, 623 (1998)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 9, 2003, pp. 841–846.

Original Russian Text Copyright © 2003 by Konovalov, Mikhailovskii, Tsypin, Galvão, Nascimento.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konovalov, S.V., Mikhailovskii, A.B., Tsypin, V.S. et al. Drift stabilization of internal resistive-wall modes in tokamaks. Plasma Phys. Rep. 29, 779–784 (2003). https://doi.org/10.1134/1.1609581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1609581

Keywords

Navigation