Skip to main content
Log in

Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Results from kinetic and fluid simulations of the positive column plasma of a dc oxygen discharge are compared using commercial CFDRC software (http://www.cfdrc.com/˜cfdplasma), which enables one to perform numerical simulations in an arbitrary 3D geometry with the use of both the fluid equations for all the components (fluid model) and the kinetic equation for the electron energy distribution function (kinetic model). It is shown that, for both the local and nonlocal regimes of the formation of the electron energy distribution function (EEDF), the non-Maxwellian EEDF can satisfactorily be approximated by two groups of electrons. This allows one to take into account kinetic effects within the conventional fluid model in the simplest way by using the proposed two-temperature approximation of the nonequilibrium and nonlocal EEDF (2T fluid model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lieberman and A. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).

    Google Scholar 

  2. I. G. Kouznetsov, A. J. Lichtemneberg, and M. A. Lieberman, Plasma Sources Sci. Technol. 5, 662 (1996).

    Article  ADS  Google Scholar 

  3. J. D. Bukowski, D. B. Graves, and P. J. Vitello, Appl. Phys. 80, 2614 (1996).

    Google Scholar 

  4. C. Lee and M. A. Lieberman, J. Vac. Sci. Technol. A 13, 368 (1995).

    ADS  Google Scholar 

  5. J. T. Gudmindsson, I. G. Kouznetsov, K. K. Patel, et al., J. Phys. D 34, 1100 (2002).

    ADS  Google Scholar 

  6. I. P. Shkarofsky, T. W. Johnson, and M. P. Bachynski, The Particle Kinetics of Plasmas (Addison-Wesley, Reading, 1966).

    Google Scholar 

  7. A. A. Kudryavtsev and L. D. Tsendin, Zh. Tekh. Fiz. 69(11), 34 (1999) [Tech. Phys. 44, 1290 (1999)].

    Google Scholar 

  8. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995).

    Article  ADS  Google Scholar 

  9. A. V. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Taylor & Francis, London, 2001).

    Google Scholar 

  10. A. A. Kudryavtsev and L. D. Tsendin, Pis’ma Zh. Tekh. Fiz. 28(20), 7 (2002) [Tech. Phys. Lett. 28, 841 (2002)].

    Google Scholar 

  11. G. Gousset, C. M. Ferreira, M. Pinheiro, et al., J. Phys. D 24, 290 (1991).

    Article  ADS  Google Scholar 

  12. V. V. Ivanov, K. S. Klopovsky, D. V. Lopaev, et al., IEEE Trans. Plasma Sci. 27, 1279 (1999).

    Article  Google Scholar 

  13. J. T. Gunmindsson, A. M. Marakhtanov, K. K. Patel, et al., J. Phys. D 33, 1323 (2000).

    ADS  Google Scholar 

  14. E. A. Bogdanov, V. I. Kolobov, A. A. Kudryavtsev, et al., Zh. Tekh. Fiz. 72(8), 13 (2002) [Tech. Phys. 47, 946 (2002)].

    Google Scholar 

  15. M. W. Kiehlbauch and D. B. Graves, J. Appl. Phys. 91, 3539 (2002).

    Article  ADS  Google Scholar 

  16. CFD-PLASMA: User’s Manual (CFD, Huntsville, 1999–2002).

  17. http://www.cfdrc.com/˜cfdplasma.

  18. V. V. Ivanov, K. S. Klopovsky, D. V. Lopaev, et al., J. Plasma Phys. 26, 970 (2000).

    Google Scholar 

  19. http://www.siglo-kinema.com/BOLSIG: Boltzmann Solver for the SIGLO-series.

  20. J. Behnke, Yu. Golobovsky, S. U. Nisimov, et al., Contrib. Plasma Phys. 36(1), 75 (1996).

    Google Scholar 

  21. J. H. Ingold, Phys. Rev. E 56, 5932 (1997).

    Article  ADS  Google Scholar 

  22. B. Eliassen and V. Kogelsschalz, J. Phys. B 19, 1241 (1986).

    ADS  Google Scholar 

  23. W. L. Morgan and L. Vriens, J. Appl. Phys. 51, 5300 (1980).

    Article  ADS  Google Scholar 

  24. J. T. Dakin, J. Appl. Phys. 60, 563 (1986).

    ADS  Google Scholar 

  25. A. Harters and J. A. M. van der Mullen, J. Phys. D 34, 1907 (2001).

    ADS  Google Scholar 

  26. R. N. Franklin and J. Snell, J. Phys. D 32, 2190 (1999).

    ADS  Google Scholar 

  27. V. L. Ginzburg and V. L. Gurevich, Usp. Fiz. Nauk 70, 201 (1960) [Sov. Phys. Usp. 70, 115 (1960)].

    Google Scholar 

  28. T. Kimura and K. Oke, J. Appl. Phys. 89, 4240 (2001).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 73, No. 8, 2003, pp. 45–55.

Original Russian Text Copyright © 2003 by Bogdanov, A. Kudryavtsev, Tsendin, Arslanbekov, Kolobov, V. Kudryavtsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, E.A., Kudryavtsev, A.A., Tsendin, L.D. et al. Substantiation of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models of the positive column plasma of a dc oxygen discharge. Tech. Phys. 48, 983–994 (2003). https://doi.org/10.1134/1.1608559

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1608559

Keywords

Navigation