Skip to main content
Log in

Radiospectroscopic and dielectric spectra of nanomaterials

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The shape of lines in the radiospectroscopic (NMR and EPR) and dielectric spectra of materials formed by nanoparticles (hereafter, nanomaterials) is analyzed theoretically. The theory is developed in the framework of the core and shell model according to which a nanoparticle consists of two regions whose properties are affected and unaffected by the surface, respectively. The changes in the resonance frequency, the relaxation time, and the static permittivity due to the surface tension are taken into account, and the Gaussian and Lorentzian shapes of homogeneously broadened lines are considered. The inhomogeneous broadening of the spectral lines is examined for several types of nanoparticle size distributions. It is demonstrated that the splitting of the initial lines in the spectra of bulk systems into pairs of lines with a decrease in the particle size is a specific feature of the spectra of nanoparticles. The intensities and half-widths of the lines are investigated as functions of the parameters of the size distribution of nanoparticles. The results of theoretical calculations are compared with recent experimental data on the 17O and 25Mg NMR spectra of nanocrystalline MgO. The theoretical dependences of the intensity, the resonance frequency, and the half-width of the spectral lines are in good agreement with the experimental data. The proposed theory offers a satisfactory explanation of the behavior of the static permittivity in BaTiO3 ceramic materials with nanometer-sized grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ishikawa, T. Nomura, N. Okada, and K. Tokada, Jpn. J. Appl. Phys., Part 1 35, 5196 (1996).

    Google Scholar 

  2. J. Rychetsky and O. Hudak, J. Phys.: Condens. Matter 9, 4955 (1997).

    ADS  Google Scholar 

  3. B. Jiang and L. A. Bursill, Phys. Rev. B 60, 9978 (1999).

    ADS  Google Scholar 

  4. M. P. McNeal, Sei-Jou Jang, and R. E. Newnham, J. Appl. Phys. 83, 3298 (1998).

    Article  ADS  Google Scholar 

  5. W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B 50, 698 (1994).

    ADS  Google Scholar 

  6. Xiaoping Li and Wei-Heng Shih, J. Am. Ceram. Soc. 80, 2844 (1997).

    Google Scholar 

  7. J. C. Niepce, Electroceramics 4(5–7), 29 (1994).

    Google Scholar 

  8. R. Bottcher, C. Klimm, H. C. Semmelhack, et al., Phys. Status Solidi B 215, R3 (1999).

    Google Scholar 

  9. A. V. Ragulya, Nanostruct. Mater. 10(3), 349 (1998).

    Google Scholar 

  10. V. M. Stoneham, Rev. Mod. Phys. 41, 82 (1969).

    Article  ADS  Google Scholar 

  11. M. D. Glinchuk, V. G. Grachev, S. B. Roitsin, and L. A. Sislin, Electrical Effects in Radiospectroscopy (Nauka, Moscow, 1981).

    Google Scholar 

  12. Wenhui Ma, Mingsheng Zhang, and Zuhong Lu, Phys. Status Solidi A 166, 811 (1998).

    ADS  Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Statistical Physics, 2nd ed. (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  14. P. Perriat, J. C. Niepce, and G. Gaboche, J. Therm. Anal. 41, 635 (1994).

    Google Scholar 

  15. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  16. M. D. Glinchuk, V. V. Laguta, I. P. Bykov, et al., J. Appl. Phys. 81, 3561 (1997).

    Article  ADS  Google Scholar 

  17. O. Kircher, B. Schiener, and R. Bohmer, Phys. Rev. Lett. 81, 4520 (1998).

    Article  ADS  Google Scholar 

  18. A. G. Sveshnikov and A. N. Tikhonov, The Theory of Functions of a Complex Variable (Nauka, Moscow, 1970).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 1st ed. (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1960).

    Google Scholar 

  20. M. E. Lines and A. M. Glass, Principles and Application of Ferroelectric and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  21. C. L. Wang and S. R. P. Smith, J. Phys.: Condens. Matter 7, 7163 (1995).

    ADS  Google Scholar 

  22. A. V. Chadwick, I. J. F. Poplett, D. T. S. Maitland, and M. E. Smith, Chem. Mater. 10(3), 864 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 8, 2003, pp. 1510–1518.

Original Russian Text Copyright © 2003 by Glinchuk, Morozovskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glinchuk, M.D., Morozovskaya, A.N. Radiospectroscopic and dielectric spectra of nanomaterials. Phys. Solid State 45, 1586–1595 (2003). https://doi.org/10.1134/1.1602900

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1602900

Keywords

Navigation