Skip to main content
Log in

New mechanism for the influence of Xe on the concentration of CO2 molecules in self-sustained CO-laser discharges

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The dependence of the CO2 concentration on the discharge conditions and the mixture composition in a CO laser is studied experimentally. The experimental data are compared with the calculated results. A scheme of the reactions that govern the concentration of CO2 molecules under the experimental conditions in question is constructed. It is shown that, in a gas-discharge plasma, an admixture of Xe in a mixture containing CO molecules gives rise to a new mechanism for the dissociation of CO2 molecules by metastable xenon atoms. Under conditions close to the operating conditions of sealed-off CO lasers, the dissociation of CO2 molecules in collisions with metastable. Xe(3P2) atoms becomes the dominant dissociation mechanism in a He: CO mixture because it proceeds at a fast rate. This explains the observed decrease in the CO2 concentration in a xenon-containing He: CO mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Brawn and A. L. S. Smith, J. Phys. E 8, 870 (1975).

    ADS  Google Scholar 

  2. I. L. Dubrovina, V. N. Ochkin, and N. N. Sobolev, Kvantovaya Élektron. (Moscow) 4, 1038 (1975).

    Google Scholar 

  3. E. N. Lotkova, S. G. Goncharova, and V. V. Pisarenko, Kvantovaya Élektron. (Moscow) 1, 542 (1974).

    Google Scholar 

  4. M. L. Bhaumik, High Power Lasers (New York, 1975).

  5. G. B. Hocker, IEEE J. Quantum Electron. 7, 573 (1974).

    Google Scholar 

  6. E. A. Trubacheev, Tr. Fiz. Inst. im. P. N. Lebedeva, Akad. Nauk. SSSR 102, 1 (1977).

    Google Scholar 

  7. D. S. Murray and A. L. S. Smith, J. Phys. D 1, 2478 (1978).

    Google Scholar 

  8. V. S. Aleinikov and V. I. Masychev, Carbon-Oxide Lasers (Radio i Svyaz', Moscow, 1980).

    Google Scholar 

  9. G. M. Grigorian, I. V. Kochetov, and N. A. Dyatko, in Proceedings of the 6th International Science Seminar on Nonequlibrium Processes and Applications, Minsk, 2002, p. 15.

  10. G. M. Grigorian, B. M. Dymshits, and Yu. Z. Ionikh, Opt. Spektrosk. 65, 766 (1988) [Opt. Spectrosc. 65, 452 (1988)].

    Google Scholar 

  11. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, et al., Teplofiz. Vys. Temp. 22, 1048 (1984).

    Google Scholar 

  12. J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline, J. Appl. Phys. 71, 5363 (1992).

    Article  ADS  Google Scholar 

  13. A. A. Mityureva and V. V. Smirnov, J. Phys. B 27, 1869 (1994).

    Article  ADS  Google Scholar 

  14. V. Yu. Baranov, V. M. Borisov, F. I. Fysikailo, et al., Preprint No. 3080 (Kurchatov Inst. Atomic Energy, Moscow, 1979).

  15. I. V. Kochetov, V. G. Pevgov, L. S. Polak, and D. I. Slovetskii, Plasmochemical Reactions, Ed. by L. S. Polak (Inst. Neftekhim. Sint., Akad. Nauk SSSR, Moscow, 1979), p. 28.

    Google Scholar 

  16. J. E. Land, J. Appl. Phys. 49, 5716 (1978).

    Article  ADS  Google Scholar 

  17. H. Ehrhardt, L. Langhans, F. Linder, and H. S. Taylor, Phys. Rev. 173, 222 (1968).

    Article  ADS  Google Scholar 

  18. G. N. Haddad and H. B. Milloy, Aust. J. Phys. 36, 473 (1983).

    ADS  Google Scholar 

  19. N. L. Aleksandrov, I. V. Kochetov, and A. P. Napartovich, Khim. Vys. Energ. 20, 291 (1986).

    Google Scholar 

  20. N. L. Aleksandrov, A. M. Konchakov, and E. E. Son, Zh. Tekh. Fiz. 49, 1200 (1979) [Sov. Phys. Tech. Phys. 24, 664 (1979)].

    Google Scholar 

  21. N. A. Dyatko, I. V. Kochetov, A. P. Napartovich, and M. D. Taran, Preprint No. 3842/12 (Kurchatov Inst. Atomic Energy, Moscow, 1983).

  22. D. I. Slovetskii, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1984), Vol. 11, p. 213.

    Google Scholar 

  23. E. E. Ivanov, Yu. Z. Ionikh, N. P. Penkin, et al., Khim. Fiz. 7, 1694 (1982).

    Google Scholar 

  24. G. M. Grigorian and Yu. Z. Ionikh, Khim. Vys. Energ. 23, 548 (1989).

    Google Scholar 

  25. A. I. Maksimov, L. S. Polak, D. I. Slovetskii, et al., Khim. Vys. Energ. 13, 358 (1973).

    Google Scholar 

  26. G. M. Grigorian, in Proceedings of the All-Russian Conference on Physics of Low-Temperature Plasma, Petrozavodsk, 2002, p. 86.

  27. S. Toby, Int. J. Chem. Kinet. 16, 149 (1984).

    Article  Google Scholar 

  28. F. Slanger and G. Black, J. Chem. Phys. 53, 3722 (1970).

    Google Scholar 

  29. S. De Benedictis, M. Capitelli, F. Gramarossa, et al., Opt. Comm. 47, 107 (1983).

    ADS  Google Scholar 

  30. S. De Benedictis, C. Gorse, M. Cachiatori, et al., Chem. Phys. Lett. 96, 674 (1983).

    ADS  Google Scholar 

  31. S. De Benedictis, F. Gramarossa, R. D'Agostino, et al., J. Phys. D 18, 413 (1985).

    Article  ADS  Google Scholar 

  32. L. S. Polak and D. I. Slovetsky, Int. J. Radiat. Phys. Chem. 8, 2577 (1975).

    Google Scholar 

  33. E. E. Ivanov, Yu. Z. Ionikh, N. P. Penkin, et al., Khim. Fiz. 7, 1684 (1988).

    Google Scholar 

  34. J. E. Velzco, J. H. Kolts, and D. W. Setser, J. Chem. Phys. 69, 4357 (1978).

    ADS  Google Scholar 

  35. J. Balamuta and M. F. Golde, J. Chem. Phys. 79, 2430 (1982).

    ADS  Google Scholar 

  36. P. O. Clark and J. J. Wada, J. Quant. Electron. 4, 267 (1968).

    Google Scholar 

  37. B. A. McArthur and J. Tulip, Rev. Sci. Instrum. 88, 722 (1980).

    Google Scholar 

  38. D. Stedman and D. Setser, J. Chem. Phys. 52, 3957 (1970).

    Google Scholar 

  39. M. Tsuji, K. Yamaguchi, and Y. Nishimura, Chem. Phys. 125, 337 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 8, 2003, pp. 768–774.

Original Russian Text Copyright © 2003 by Grigorian, Dyatko, Kochetov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorian, G.M., Dyatko, N.A. & Kochetov, I.V. New mechanism for the influence of Xe on the concentration of CO2 molecules in self-sustained CO-laser discharges. Plasma Phys. Rep. 29, 709–716 (2003). https://doi.org/10.1134/1.1601649

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1601649

Keywords

Navigation