Plasma Physics Reports

, Volume 29, Issue 8, pp 669–674 | Cite as

Parametric excitation of surface waves at the boundary between a magnetized plasma and a metal

  • N. A. Azarenkov
  • Yu. A. Akimov
  • V. P. Olefir
Plasma Oscillations and Waves

Abstract

A study is made of the parametric excitation of potential surface waves propagating in a planar plasma-metal waveguide structure in a magnetic field perpendicular to the plasma-metal boundary. An external, spatially uniform, alternating electric field at the second harmonic of the excited wave is used as the source of parametric excitation. A set of equations is derived that describes the excitation of surface waves due to the onset of decay instability. Expressions for the growth rates in the linear stage of instability are obtained, and the threshold amplitudes of the external electric field above which the parametric instability can occur are found. Analytic expressions for the saturation amplitudes are derived with allowance for the self-interaction of each of the excited waves and the interaction between them. The effect of the plasma parameters and the strength of the external magnetic field on the saturation amplitude, growth rates, and the threshold amplitudes of the pump electric field are analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Moisan, J. Hurbert, J. Margot, and Z. Zakrzewski, The Development and Use of Surface-Wave Sustained Discharges for Applications in Advanced Technologies Based on Wave and Beam Generated Plasmas (Kluwer, Amsterdam, 1999).Google Scholar
  2. 2.
    N. A. Azarenkov, K. N. Ostrikov, and M. Y. Yu, J. Appl. Phys. 84, 4176 (1998).ADSGoogle Scholar
  3. 3.
    N. A. Azarenkov, A. N. Kondratenko, and K. N. Ostrikov, Izv. Vyssh. Uchebn. Zaved., Radiofizika 36, 32 (1993).Google Scholar
  4. 4.
    A. N. Kondratenko, Plasma Waveguides (Atomizdat, Moscow, 1976).Google Scholar
  5. 5.
    A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959).CrossRefGoogle Scholar
  6. 6.
    N. A. Azarenkov and K. N. Ostrikov, Phys. Rep. 308, 333 (1999).CrossRefADSGoogle Scholar
  7. 7.
    D. P. Schmidt, N. B. Meezan, W. A. Hargus, Jr., and M. A. Cappelli, Plasma Sources Sci. Technol. 9, 68 (2000).CrossRefADSGoogle Scholar
  8. 8.
    N. A. Azarenkov, A. N. Kondratenko, and Yu. O. Tyshetskii, Zh. Tekh. Fiz. 69(11), 30 (1999) [Tech. Phys. 44, 1286 (1999)].Google Scholar
  9. 9.
    N. A. Azarenkov, Yu. A. Akimov, and V. P. Olefir, Vestn. Kharkov. Natsion. Univ. im. V.N. Karazina, Ser. Fiz. Yad., Chast., Polya, No. 3/19, 23 (2002).Google Scholar
  10. 10.
    N. A. Azarenkov, Yu. A. Akimov, and A. V. Gapon, Vestn. Kharkov. Natsion. Univ. im. V.N. Karazina, Ser. Fiz. Yad., Chast., Polya, No. 4/12, 29 (2000).Google Scholar
  11. 11.
    Yu. A. Akimov, N. A. Azarenkov, and V. P. Olefir, in Proceedings of the International Conference and School on Plasma Physics and Controlled Fusion, Alushta, 2002, p. 96.Google Scholar
  12. 12.
    J. Weiland and H. Wilhelmsson, Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon, Oxford, 1976; Énergoizdat, Moscow, 1981).Google Scholar
  13. 13.
    A. I. Akhiezer, V. S. Mikhailenko, V. V. Ol'shansky, and K. N. Stepanov, Fiz. Plasmy 26, 615 (2000) [Plasma Phys. Rep. 26, 575 (2000)].Google Scholar
  14. 14.
    I. Peres, M. Fortin, and J. Margot, Phys. Plasmas 3, 1754 (1996).ADSGoogle Scholar
  15. 15.
    I. Peres, A. Dallaire, P. Jones, and J. Margot, J. Appl. Phys. 82, 4211 (1997).ADSGoogle Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • N. A. Azarenkov
    • 1
  • Yu. A. Akimov
    • 1
  • V. P. Olefir
    • 1
  1. 1.Karazin National UniversityKharkovUkraine

Personalised recommendations