Skip to main content
Log in

Experimental studies of the dynamics of dust grains in gas-discharge plasmas

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of the experimental studies of the dynamics of dust grains in the plasmas of an rf capacitive discharge and a dc glow discharge are presented. The dusty plasma of a dc glow discharge was investigated in both ground-based experiments and experiments carried out under microgravity conditions (on board the Mir space station). The pair correlation function, temperature, and diffusion coefficient of dust grains are measured in a wide range of the dusty-plasma parameters. Dimensionless parameters responsible for the microscopic transport of dust-grains in a gas-discharge plasma are determined. A nonintrusive diagnostic technique for determining the dust-grain charges and screening lengths under the assumption of screened interaction between the grains is proposed. This technique is used to estimate the surface potential of dust grains of different size in a gas-discharge plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    ADS  Google Scholar 

  2. A. Melzer, T. Trottenberg, and A. Piel, Phys. Lett. 191, 301 (1994).

    Google Scholar 

  3. V. V. Zhakhovskii, V. I. Molotkov, A. P. Nefedov, et al., Pis'ma Zh. Éksp. Teor. Fiz. 66, 392 (1997) [JETP Lett. 66, 419 (1997)].

    Google Scholar 

  4. S. Nunomura, T. Misawa, N. Ohno, and S. Takamura, Phys. Rev. Lett. 83, 1970 (1999).

    Article  ADS  Google Scholar 

  5. O. Vaulina, S. Khrapak, A. Nefedov, et al., Phys. Rev. E 60, 5959 (1999).

    Article  ADS  Google Scholar 

  6. V. E. Fortov, A. P. Nefedov, O. S. Vaulina, et al., Zh. Éksp. Teor. Fiz. 114, 2004 (1998) [JETP 87, 1087 (1998)].

    Google Scholar 

  7. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al., Phys. Rev. Lett. 88, 035001 (2002).

    Google Scholar 

  8. V. E. Fortov, A. P. Nefedov, V. I. Molotkov, et al., Phys. Rev. Lett. 87, 205002 (2001).

    Google Scholar 

  9. G. Morfill, H. Thomas, U. Konopka, et al., Phys. Rev. Lett. 83, 1598 (1999).

    ADS  Google Scholar 

  10. T. Stuffler, G. Schmitt, H. Pfeuffer, et al., in Proceedings of the 52nd International Astronautical Congress, Toulouse, 2001, paper IAF-01-J.6.02.

  11. A. P. Nefedov, O. S. Vaulina, O. F. Petrov, et al., Zh. Éksp. Teor. Fiz. 122, 778 (2002) [JETP 95, 673 (2002)].

    Google Scholar 

  12. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137 (1996).

    Article  ADS  Google Scholar 

  13. U. Konopka, L. Ratke, and H. M. Thomas, Phys. Rev. Lett. 79, 1269 (1997).

    Article  ADS  Google Scholar 

  14. A. Homann, A. Melzer, and A. Piel, Phys. Rev. E 59, 3835 (1999).

    Article  ADS  Google Scholar 

  15. E. B. Tomme, B. M. Anaratone, and J. E. Allen, Plasma Sources Sci. Technol. 9, 87 (2000).

    Article  ADS  Google Scholar 

  16. A. A. Samarian, A. V. Chernyshev, A. P. Nefedov, et al., Zh. Éksp. Teor. Fiz. 119, 524 (2001) [JETP 92, 454 (2001)].

    Google Scholar 

  17. V. Fortov, A. Nefedov, V. Molotkov, et al., Phys. Rev. Lett. 87, 205002 (2001).

  18. S. Nunomura, D. Samsonov, and J. Goree, Phys. Rev. Lett. 84, 5141 (2000).

    Article  ADS  Google Scholar 

  19. C. Zafiu, A. Melzer, and A. Piel, Phys. Rev. E 63, 066403 (2001).

  20. E. B. Tomme, D. A. Low, B. M. Anaratone, and J. E. Allen, Phys. Rev. Lett. 85, 2518 (2000).

    Article  ADS  Google Scholar 

  21. E. Thomas, B. Annaratone, G. Morfill, and H. Rothermel, Phys. Rev. E 66, 016405 (2002).

    Google Scholar 

  22. T. Nitter, Plasma Sources Sci. Technol. 5, 93 (1996).

    Article  ADS  Google Scholar 

  23. J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).

    Article  ADS  Google Scholar 

  24. O. S. Vaulina, S. A. Khrapak, A. A. Samarian, and O. F. Petrov, Phys. Scr. 84, 292 (2000).

    Google Scholar 

  25. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  26. Yu. B. Golubovskii and S. U. Nisimov, Zh. Tekh. Fiz. 65(1), 46 (1995) [Tech. Phys. 40, 24 (1995)].

    Google Scholar 

  27. Yu. B. Golubovskii and S. U. Nisimov, Zh. Tekh. Fiz. 66(7), 20 (1996) [Tech. Phys. 41, 645 (1996)].

    Google Scholar 

  28. U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett. 84, 891 (2000).

    Article  ADS  Google Scholar 

  29. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Article  Google Scholar 

  30. S. A. Khrapak, A. V. Ivlev, and G. Morfill, Phys. Rev. E 64, 046403 (2001).

    Google Scholar 

  31. D. P. Resendes, J. T. Mendonca, and P. K. Shukla, Phys. Lett. A 239, 181 (1998).

    Article  ADS  Google Scholar 

  32. A. S. Ivanov, Phys. Lett. A 290, 304 (2001).

    Article  ADS  Google Scholar 

  33. J. E. Daugherty, R. K. Porteous, M. D. Kilgore, et al., J. Appl. Phys. 72, 3934 (1992).

    Article  ADS  Google Scholar 

  34. J. E. Allen, Phys. Scr. 45, 497 (1992).

    ADS  Google Scholar 

  35. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al., Zh. Éksp. Teor. Fiz. 118, 351 (2000) [JETP 91, 307 (2000)].

    Google Scholar 

  36. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Nauka, Moscow, 1979; Pergamon, Oxford, 1981).

    Google Scholar 

  37. N. A. Fuchs, The Mechanics of Aerosols (Dover, New York, 1964).

    Google Scholar 

  38. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyi, Kinetics of Diffusion-Controlled Chemical Processes (Khimiya, Moscow, 1986).

    Google Scholar 

  39. O. S. Vaulina and S. A. Khrapak, Zh. Éksp. Teor. Fiz. 119, 264 (2001) [JETP 92, 228 (2001)].

    Google Scholar 

  40. O. S. Vaulina and S. V. Vladimirov, Phys. Plasmas 9, 835 (2002).

    Article  ADS  Google Scholar 

  41. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al., Zh. Éksp. Teor. Fiz. 120, 1369 (2001) [JETP 93, 1184 (2001)].

    Google Scholar 

  42. O. S. Vaulina, S. V. Vladimirov, O. F. Petrov, et al., Phys. Rev. Lett. 88, 245002 (2002).

    Google Scholar 

  43. O. S. Vaulina, Zh. Éksp. Teor. Fiz. 121, 35 (2002) [JETP 94, 26 (2002)].

    Google Scholar 

  44. S. Hamaguchi, R. T. Farouki, and D. H. E. Dubin, Phys. Rev. E 56, 4671 (1997).

    Article  ADS  Google Scholar 

  45. M. J. Stevens and M. O. Robbins, J. Chem. Phys. 98, 2319 (1993).

    Article  ADS  Google Scholar 

  46. N. Ohta and S. Hamaguchi, Phys. Plasmas 7, 4506 (2000).

    Article  ADS  Google Scholar 

  47. A. Melzer, A. Homann, and A. Piel, Phys. Rev. E 53, 2757 (1996).

    Article  ADS  Google Scholar 

  48. F. A. Lindemann, Z. Phys. 11, 609 (1910).

    MATH  Google Scholar 

  49. Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, RF Volume Discharge: Physics, Experimental Methods, Applications (Mosk. Fiz.-Tekh. Inst., Moscow, 1995).

    Google Scholar 

  50. M. R. Akdim and W. J. Goedheer, Phys. Rev. E 65, 015401 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 8, 2003, pp. 698–713.

Original Russian Text Copyright © 2003 by Vaulina, Petrov, Fortov, Chernyshev, Gavrikov, Shakhova, Semenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaulina, O.S., Petrov, O.F., Fortov, V.E. et al. Experimental studies of the dynamics of dust grains in gas-discharge plasmas. Plasma Phys. Rep. 29, 642–656 (2003). https://doi.org/10.1134/1.1601641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1601641

Keywords

Navigation