Skip to main content
Log in

The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid

  • Nonlinear Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method of multiple scales is used to derive the fourth-order nonlinear Schrödinger equation (NSEIV) that describes the amplitude modulations of the fundamental harmonic of Stokes waves on the surface of a medium-and large-depth (compared to the wavelength) fluid layer. The new terms of this equation describe the third-order linear dispersion effect and the nonlinearity dispersion effects. As the nonlinearity and the dispersion decrease, the equation uniformly transforms into the nonlinear Schrödinger equation for Stokes waves on the surface of a finite-depth fluid that was first derived by Hasimoto and Ono. The coefficients of the derived equation are given in an explicit form as functions of kh (h is the fluid depth, and k is the wave number). As kh tends to infinity, these coefficients transform into the coefficients of the NSEIV that was first derived by Dysthe for an infinite depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Zakharov and E. A. Kuznetsov, Zh. Éksp. Teor. Fiz. 113, 1892 (1998) [JETP 86, 1035 (1998)].

    Google Scholar 

  2. A. Hasegawa and Y. Kodama, Solitons in Optical Communication (Oxford Univ. Press, London, 1995); Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron. 23, 510 (1987).

    Google Scholar 

  3. E. M. Gromov and V. I. Talanov, Zh. Éksp. Teor. Fiz. 110, 137 (1996) [JETP 83, 73 (1996)].

    Google Scholar 

  4. K. B. Dysthe, Proc. R. Soc. London, Ser. A 369, 105 (1979); K. Trulsen and K. B. Dysthe, Wave Motion 24, 281 (1996); K. Trulsen and K. B. Dysthe, J. Fluid Mech. 352, 359_(1997); K. Trulsen, I. Kliakhandler, K. B. Dysthe, and M. G. Velarde, Phys. Fluids 12, 2432 (2000).

    ADS  MATH  Google Scholar 

  5. V. P. Lukomskii, Zh. Éksp. Teor. Fiz. 108, 567 (1995) [JETP 81, 306 (1995)].

    Google Scholar 

  6. F. Dias and K. Kharif, Annu. Rev. Fluid Mech. 31, 301 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. J. R. Stocker and D. H. Peregrine, J. Fluid Mech. 399, 335 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  8. U. Brinch-Nielsen and I. G. Jonsson, Wave Motion 8, 455 (1986).

    Article  MathSciNet  Google Scholar 

  9. D. Clamond and J. P. Germain, Eur. J. Mech. B (Fluids) 18, 67 (1999).

    MathSciNet  Google Scholar 

  10. Yu. G. Rapoport, C. E. Zaspel, J. H. Mantha, and V. V. Grimalsky, Phys. Rev. B 65, 024423-1 (2002).

    Google Scholar 

  11. V. P. Lukoms’kii and Yu. V. Sedlets’kii, Zh. Fiz. Dosl. 5, 107 (2001).

    MathSciNet  Google Scholar 

  12. A. G. Litvak and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 10, 539 (1967).

    Google Scholar 

  13. V. I. Karpman, J. J. Rasmussen, and A. G. Shagalov, Phys. Rev. E 64, 026614-1 (2001).

    Google Scholar 

  14. A. Mahalingam and K. Porsezian, Phys. Rev. E 64, 046608-1 (2001).

    Google Scholar 

  15. V. E. Zakharov, Prikl. Mekh. Tekh. Fiz., No. 2, 86 (1968).

  16. H. C. Yuen and B. M. Lake, Phys. Fluids 18, 956 (1975); H. Yuen and B. M. Lake, Nonlinear Dynamics of Deep-Water Gravity Waves (Academic, New York, 1982; Mir, Moscow, 1987).

    ADS  Google Scholar 

  17. D. J. Benney and G. J. Roskes, Stud. Appl. Math. 48, 377 (1969).

    Google Scholar 

  18. V. E. Zakharov and V. G. Kharitonov, Prikl. Mekh. Tekh. Fiz., No. 5, 45 (1970).

  19. V. H. Chu and C. C. Mei, J. Fluid. Mech. 41, 873 (1970).

    ADS  MathSciNet  Google Scholar 

  20. H. Hasimoto and H. Ono, J. Phys. Soc. Jpn. 33, 805 (1972).

    Google Scholar 

  21. M. Stiasnie and L. Shemer, J. Fluid Mech. 143, 47 (1984).

    ADS  MathSciNet  Google Scholar 

  22. A. Devey and K. Stewartson, Proc. R. Soc. London, Ser. A 338, 101 (1974).

    ADS  Google Scholar 

  23. T. Kawahara, J. Phys. Soc. Jpn. 38, 265 (1975).

    Google Scholar 

  24. P. Liu and M. Dingemans, Wave Motion 11, 41 (1989).

    Article  MathSciNet  Google Scholar 

  25. P. Christodoulides and F. Dias, Phys. Fluids 7, 3013 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Stiassnie, Wave Motion 6, 431 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  27. P. A. E. M. Janssen, J. Fluid Mech. 126, 1 (1983).

    ADS  MATH  MathSciNet  Google Scholar 

  28. S. J. Hogan, Proc. R. Soc. London, Ser. A 402, 359 (1985).

    ADS  MATH  Google Scholar 

  29. E. Lo and C. C. Mei, J. Fluid Mech. 150, 395 (1985).

    ADS  Google Scholar 

  30. M. P. Tulin and T. Waseda, J. Fluid Mech. 378, 197 (1999).

    Article  ADS  Google Scholar 

  31. L. Shemer, Haiyuing Jiao, E. Kit, and Y. Agnon, J. Fluid Mech. 427, 107 (2001).

    Article  ADS  Google Scholar 

  32. M. J. Ablowitz, J. Hammack, D. Henderson, and C. M. Schober, Phys. Rev. Lett. 84, 887 (2000); Physica D (Amsterdam) 152–153, 416 (2001).

    Article  ADS  Google Scholar 

  33. Bhattacharyya Sudebi and K. P. Das, J. Aust. Math. Soc. B, Appl. Math. 39, 214 (1997).

    Google Scholar 

  34. E. Kit and L. Shemer, J. Fluid Mech. 450, 201 (2002).

    ADS  MathSciNet  Google Scholar 

  35. G. B. Whitham, J. Fluid Mech. 27, 399 (1967).

    ADS  MATH  MathSciNet  Google Scholar 

  36. T. B. Benjamin, Proc. R. Soc. London, Ser. A 299, 59 (1967).

    ADS  Google Scholar 

  37. M. Tajiri and Y. Watanabe, Phys. Rev. E 57, 3510 (1998); M. Tajiri and T. Arai, Phys. Rev. E 60, 2297 (1999); M. Tajiri, T. Arai, and K. Takenahi, Phys. Rev. E 64, 056622-1 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  38. R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova, Physica D (Amsterdam) 159, 35 (2001).

    ADS  MathSciNet  Google Scholar 

  39. R. Kh. Zeitunyan, Usp. Fiz. Nauk 165, 1403 (1995) [Phys. Usp. 38, 1333 (1995)].

    Google Scholar 

  40. R. S. Johnson, Proc. R. Soc. London, Ser. A 357, 131 (1977).

    ADS  MATH  Google Scholar 

  41. T. Kakutani and K. Michihiro, J. Phys. Soc. Jpn. 52, 4129 (1983).

    Article  Google Scholar 

  42. L. Shemer, E. Kit, Haiyuing Jiao, and O. Eitan, J. Waterway, Port, Coastal, Ocean Eng. 124, 320 (1998).

    Google Scholar 

  43. V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 1, 2003, pp. 200–213.

Original Russian Text Copyright © 2003 by Sedletsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedletsky, Y.V. The fourth-order nonlinear Schrödinger equation for the envelope of Stokes waves on the surface of a finite-depth fluid. J. Exp. Theor. Phys. 97, 180–193 (2003). https://doi.org/10.1134/1.1600810

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1600810

Keywords

Navigation