Skip to main content
Log in

Anomalous low-temperature behavior of the thermal characteristics of MgB2

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of T c and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at T c≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at T c2≈10–12 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Nuranaka, et al., Nature 410, 63 (2001).

    Article  ADS  Google Scholar 

  2. C. Buzea and T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001).

    Article  ADS  Google Scholar 

  3. S. L. Bud’ko, C. Petrovic, G. Lapertot, et al., E-print archives, cond-mat/0102413.

  4. J. Kortus, I. I. Mazin, K. D. Belashchenko, et al., Phys. Rev. Lett. 86, 4656 (2001).

    ADS  Google Scholar 

  5. A. Y. Liu, I. I. Mazin, and J. Kortus, Phys. Rev. Lett. 87, 087005 (2001).

    Google Scholar 

  6. A. A. Golubov, J. Kortus, O. V. Dolgov, et al., J. Phys.: Condens. Matter 14, 1353 (2002).

    Article  ADS  Google Scholar 

  7. Y. Wang, T. Plackowski, and A. Junod, Physica C (Amsterdam) 355, 179 (2001).

    ADS  Google Scholar 

  8. F. Bouquet, R. A. Fisher, N. E. Phillips, et al., Phys. Rev. Lett. 87, 047001 (2001).

    Google Scholar 

  9. S. L. Bud’ko, G. Lapertot, C. Petrovic, et al., Phys. Rev. Lett. 86, 1877 (2001).

    ADS  Google Scholar 

  10. H. D. Yang, J.-Y. Lin, H. H. Li, et al., Phys. Rev. Lett. 87, 167003 (2001).

  11. Ch. Wälti, E. Felder, C. Degen, et al., Phys. Rev. B 64, 172515 (2001).

  12. E. Bauer, Ch. Paul, St. Berger, et al., J. Phys.: Condens. Matter 13, L487 (2001).

    ADS  Google Scholar 

  13. N. V. Anshukova, B. M. Bulychev, A. I. Golovashkin, et al., Kratk. Soobshch. Fiz., No. 4, 24 (2002).

  14. A. V. Sologubenko, J. Jun, S. M. Kazakov, et al., cond-mat/0111273; cond-mat/0112191; cond-mat/0201517.

  15. M. Schneider, D. Lipp, A. Gladun, et al., Physica C (Amsterdam) 363, 6 (2001).

    ADS  Google Scholar 

  16. N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, and A. P. Rusakov, Usp. Fiz. Nauk 167, 887 (1997) [Phys. Usp. 40, 843_(1997)].

    Google Scholar 

  17. N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 550 (2000) [JETP Lett. 71, 377 (2000)].

    Google Scholar 

  18. N. V. Anshukova, B. M. Bulychev, A. I. Golovashkin, et al., Kratk. Soobshch. Fiz., No. 7, 16 (2001).

  19. N. V. Anshukova, Yu. V. Boguslavskii, A. I. Golovashkin, et al., Fiz. Tverd. Tela (St. Petersburg) 35, 1415 (1993) [Phys. Solid State 35, 714 (1993)].

    Google Scholar 

  20. A. A. Minakov, Yu. V. Boguslavsky, and C. Schick, Thermochim. Acta 317, 117 (1998).

    Article  Google Scholar 

  21. A. A. Minakov, S. A. Adamovsky, and C. Schick, Thermochim. Acta 377, 173 (2001).

    Article  Google Scholar 

  22. H. You, U. Welp, and Y. Fang, Phys. Rev. B 43, 3660 (1991).

    ADS  Google Scholar 

  23. Z. J. Yang, M. Yewondwossen, D. W. Lawther, et al., J. Supercond. 8, 223 (1995).

    Google Scholar 

  24. N. V. Anshukova, A. I. Golovashkin, L. I. Ivanova, et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 550 (2000) [JETP Lett. 71, 377 (2000)].

    Google Scholar 

  25. O. V. Alexandrov, M. Frencois, T. Graf, and K. Ivon, Physica C (Amsterdam) 170, 56 (1990).

    ADS  Google Scholar 

  26. V. V. Eremenko, V. A. Sirenko, G. Shimak, et al., Fiz. Tverd. Tela (St. Petersburg) 40, 1199 (1998) [Phys. Solid State 40, 1091 (1998)].

    Google Scholar 

  27. R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, 1976; Mir, Moscow, 1979).

    Google Scholar 

  28. Y. Kong, O. V. Dolgov, O. Jepsen, and O. K. Andersen, Phys. Rev. B 64, 020501 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 124, No. 1, 2003, pp. 80–88.

Original Russian Text Copyright © 2003 by Anshukova, Bulychev, Golovashkin, Ivanova, Krynetski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\), Minakov, Rusakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anshukova, N.V., Bulychev, B.M., Golovashkin, A.I. et al. Anomalous low-temperature behavior of the thermal characteristics of MgB2 . J. Exp. Theor. Phys. 97, 70–77 (2003). https://doi.org/10.1134/1.1600798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1600798

Keywords

Navigation