Skip to main content
Log in

Structures of order parameters in inhomogeneous phase states of strongly correlated systems

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structures of order parameters which determine the bounds of the phase states within the framework of the CP 1 Ginzburg-Landau model are considered. Using the formulation of this model [1] in terms of the gauged order parameters (the unit vector field n, density ρ2 and momentum c of particles), we found that some universal properties of phases and field configurations are determined by the Hopf invariant Q and its generalizations. At a sufficiently high level of doping, it is found that, outside the superconducting phase, the charge distributions in the form of loops may be more preferable than those in the form of stripes. It is shown that, in phase with its mutual linking number L < Q, the transition to an inhomogeneous superconducting state with nonzero total momentum of pairs takes place. A universal mechanism of breaking of the topological coherence of the superconducting state due to a decrease of the charge density is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev. B 65, 100512 (2002).

    Google Scholar 

  2. B. Lake, G. Aeppli, K. N. Clausen, et al., Science 291, 1759 (2001).

    Article  ADS  Google Scholar 

  3. B. Lake, H. M. Rönnow, N. B. Christensen, et al., Nature 415, 299 (2002).

    Article  ADS  Google Scholar 

  4. J. E. Hoffman, E. W. Hudson, K. M. Lang, et al., Science 295, 466 (2002).

    Article  ADS  Google Scholar 

  5. S. H. Pan, J. P. O’Neal, R. L. Badzey, et al., Nature 413, 282 (2001).

    Article  ADS  Google Scholar 

  6. S. J. L. Billinge, E. S. Bozin, M. Gutmann, and H. Takagi, cond-mat/0005032.

  7. S. Caprara, C. Castellani, C. Di Castro, et al., cond-mat/9907265.

  8. L. D. Faddeev and A. J. Niemi, Phys. Rev. Lett. 82, 1624 (1999); Phys. Lett. B 525, 195 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Babaev, Phys. Rev. Lett. 88, 177002 (2002).

    Google Scholar 

  10. Y. M. Cho, Phys. Rev. Lett. 87, 252001 (2001); hep-th/0110076.

    Google Scholar 

  11. A. G. Abanov and P. W. Wiegmann, hep-th/0105213.

  12. L. D. Faddeev, Preprint No. IAS-75-QS70 (Princeton, 1975).

  13. M. Lübke, S. M. Nasir, A. Niemi, and K. Torokoff, Phys. Lett. B 534, 195 (2002).

    ADS  Google Scholar 

  14. A. P. Protogenov and V. A. Verbus, Pis’ma Zh. Éksp. Teor. Fiz. 76, 60 (2002) [JETP Lett. 76, 53 (2002)].

    Google Scholar 

  15. A. P. Protogenov, cond-mat/0205133.

  16. L. S. Isaev and A. P. Protogenov, cond-mat/0210295.

  17. A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1964)].

    Google Scholar 

  18. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).

    ADS  Google Scholar 

  19. W. V. Liu and F. Wilczek, cond-mat/0208052.

  20. P. van Baal, hep-th/0109148.

  21. L. D. Faddeev and A. J. Niemi, Nature 387, 58 (1997).

    Article  Google Scholar 

  22. J. Gladikowski and M. Hellmund, Phys. Rev. D 56, 5194 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. A. Battye and P. M. Sutcliffe, Phys. Rev. Lett. 81, 4798 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Hietarinta and P. Salo, Phys. Lett. B 451, 60 (1999).

    ADS  MathSciNet  Google Scholar 

  25. A. F. Vakulenko and L. V. Kapitanskii, Dokl. Akad. Nauk SSSR 246, 840 (1979) [Sov. Phys. Dokl. 24, 433 (1979)].

    MathSciNet  Google Scholar 

  26. A. Kundu and Yu. P. Rubakov, J. Phys. A 15, 269 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  27. R. S. Ward, Nonlinearity 12, 1 (1999); hep-th/9811176.

    Article  MathSciNet  Google Scholar 

  28. H. Takagi, http://agenda.ictp.trieste.it/agenda/current/fullAgenda.php?email=0&ida=a01152.

  29. V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics (Springer, New York, 1998), Appl. Math. Sci., Vol. 125, Chap. 3.

    Google Scholar 

  30. H. K. Moffatt, J. Fluid Mech. 106, 117 (1969).

    ADS  Google Scholar 

  31. V. E. Zakharov and E. A. Kuznetsov, Usp. Fiz. Nauk 167, 1137 (1997) [Phys. Usp. 40, 1087 (1997)].

    Google Scholar 

  32. N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

  33. A. I. Larkin, private communication.

  34. P. van Baal and A. Wipf, hep-th/0105141.

  35. X.-G. Wen, cond-mat/9506066.

  36. A. P. Protogenov, Usp. Fiz. Nauk 162, 1 (1992).

    Google Scholar 

  37. L. A. Abramyan, V. A. Verbus, and A. P. Protogenov, Pis’ma Zh. Éksp. Teor. Fiz. 69, 839 (1999) [JETP Lett. 69, 887 (1999)]; A. P. Protogenov, Pis’ma Zh. Éksp. Teor. Fiz. 73, 292 (2001) [JETP Lett. 73, 255 (2001)].

    Google Scholar 

  38. V. M. H. Ruutu, U. Parts, J. H. Koivuniemi, et al., Pis’ma Zh. Éksp. Teor. Fiz. 60, 659 (1994) [JETP Lett. 60, 671 (1994)].

    Google Scholar 

  39. Yu. G. Makhlin and T. Sh. Misirpashaev, Pis’ma Zh. Éksp. Teor. Fiz. 61, 48 (1995) [JETP Lett. 61, 49 (1995)].

    Google Scholar 

  40. A. G. Abanov, private communication.

  41. J. von Delft and R. Poghossian, cond-mat/0106405.

  42. G. Sierra, Nucl. Phys. B 572, 517 (2000); hep-th/0111114.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. P. Coleman, C. Pepin, Q. Si, and R. Ramazashvili, J. Phys.: Condens. Matter 13, 723 (2001).

    Article  ADS  Google Scholar 

  44. O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd ed. (Gordon and Breach, New York, 1969; Nauka, Moscow, 1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 6, 2003, pp. 1297–1307.

Original Russian Text Copyright © 2003 by Isaev, Protogenov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaev, L.S., Protogenov, A.P. Structures of order parameters in inhomogeneous phase states of strongly correlated systems. J. Exp. Theor. Phys. 96, 1140–1148 (2003). https://doi.org/10.1134/1.1591226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1591226

Keywords

Navigation