Skip to main content
Log in

Coexistence of superconducting and spiral spin orders: Models of ruthenate

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of a spiral spin structure on superconducting (SC) pairing in a three-band Hubbard model related to Sr2RuO4 is analyzed in the mean-field approximation. Such a structure with incommensurate vector Q=2π (1/3, 1/3) is the simplest one that removes the nesting instability of α and β bands. It is assumed that there is an intralayer pairing interaction between two types of neighbor sites, those with attraction in a singlet channel and with attraction in both two-singlet and triplet channels. In both cases, a mixed singlet-triplet SC order is observed in the γ band: a d-wave singlet order is accompanied by the formation of p-wave triplet pairs (k,-k-Q)⇈ and (k,−k+Q)⇊ with large total momenta ∓Q and the spin projections ±1 onto an axis perpendicular to the spin rotation plane of the spiral spin structure. Both the SC and normal states are states with broken time-reversal symmetry. In contradiction to the experiment, the models give different scales of T c for the γ band and for α and β bands. This fact shows that the models with intralayer interactions or with the spin structure assumed are insufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Maeno, T. M. Rice, and M. Sigrist, Phys. Today 54(1), 42 (2001).

    ADS  Google Scholar 

  2. T. M. Rice and M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995).

    Article  ADS  Google Scholar 

  3. K. Ishida, H. Mukuda, Y. Kitaoka, et al., Nature 396, 658 (1998).

    Article  Google Scholar 

  4. M. E. Zhitomirsky and T. M. Rice, Phys. Rev. Lett. 87, 057001 (2001).

    Google Scholar 

  5. M. Sigrist, D. Agterberg, A. Furusaki, et al., cond-mat/9902214.

  6. K. M. Luke, Y. Fudamoto, K. M. Kojima, et al., Nature 394, 558 (1998).

    Article  Google Scholar 

  7. S. Nishizaki, Y. Maeno, and Z. Mao, J. Low Temp. Phys. 117, 1581 (1999); J. Phys. Soc. Jpn. 69, 572 (2000).

    Google Scholar 

  8. K. Ishida, H. Makuda, Y. Kitaoka, et al., Phys. Rev. Lett. 84, 5387 (2000).

    Article  ADS  Google Scholar 

  9. M. A. Tanatar, M. Suzuki, S. Nagai, et al., Phys. Rev. Lett. 86, 2649 (2001); M. A. Tanatar, S. Nagai, Z. Q. Mao, et al., Phys. Rev. B 63, 064505 (2001).

    Article  ADS  Google Scholar 

  10. K. Izawa, H. Takahashi, M. Yamaguchi, et al., Phys. Rev. Lett. 86, 2653 (2001).

    ADS  Google Scholar 

  11. I. Bonalde, B. D. Yanoff, M. B. Salamon, et al., Phys. Rev. Lett. 85, 4775 (2000).

    Article  ADS  Google Scholar 

  12. C. Lupien, W. A. MacFarlane, C. Proust, et al., Phys. Rev. Lett. 86, 5986 (2001); cond-mat/0101319.

    Article  ADS  Google Scholar 

  13. H. Won and K. Maki, Europhys. Lett. 52, 427 (2000).

    Article  ADS  Google Scholar 

  14. I. Eremin, D. Manske, C. Joas, and K. M. Bennemann, cond-mat/0102074.

  15. R. Werner, Phys. Rev. B 67, 014505 (2003); Phys. Rev. B 67, 014506 (2003); R. Werner and V. J. Emery, Phys. Rev. B 67, 014504 (2003).

  16. M. Eschrig, J. Ferrer, and M. Fogelström, cond-mat/0101208; Phys. Rev. B 63, 220509 (2001).

    Google Scholar 

  17. D. F. Agterberg, T. M. Rice, and M. Sigrist, Phys. Rev. Lett. 78, 3374 (1997).

    Article  ADS  Google Scholar 

  18. J. F. Annett, G. Litak, B. L. Györffy, and K. I. Wysokinski, Phys. Rev. B 66, 134514 (2002).

    Google Scholar 

  19. G. Litak, J. F. Annett, B. L. Györffy, and K. I. Wysokinski, cond-mat/0203601.

  20. A. A. Ovchinnikov and M. Ya. Ovchinnikova, cond-mat/0201536; A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. Éksp. Teor. Fiz. 122, 101 (2002) [JETP 95, 87 (2002)].

    Google Scholar 

  21. Y. Sidis, M. Braden, P. Bourges, et al., Phys. Rev. Lett. 83, 3320 (1999).

    Article  ADS  Google Scholar 

  22. M. Braden, O. Friedt, Y. Sidis, et al., cond-mat/0107579.

  23. A. Damascelli, D. H. Lu, K. M. Shen, et al., Phys. Rev. Lett. 85, 5194 (2000).

    Article  ADS  Google Scholar 

  24. I. I. Mazin and D. J. Singh, Phys. Rev. Lett. 79, 733 (1997); Phys. Rev. Lett. 82, 4324 (1999).

    Article  ADS  Google Scholar 

  25. A. Liebsch and A. Lichtenstein, Phys. Rev. Lett. 84, 1591 (2000).

    Article  ADS  Google Scholar 

  26. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964); A. I. Larkin and Yu. N. Ovchinnikov, Zh. Éksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1964)].

    ADS  Google Scholar 

  27. V. I. Belyavsky and Yu. V. Kopaev, cond-mat/0203138; V. I. Belyavskii and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 121, 175 (2002) [JETP 94, 149 (2002)]; V. I. Belyavskii, V. V. Kopaev, and Yu. V. Kopaev, Zh. Éksp. Teor. Fiz. 118, 941 (2000) [JETP 91, 817 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 6, 2003, pp. 1286–1296.

Original Russian Text Copyright © 2003 by Ovchinnikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikova, M.Y. Coexistence of superconducting and spiral spin orders: Models of ruthenate. J. Exp. Theor. Phys. 96, 1131–1139 (2003). https://doi.org/10.1134/1.1591225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1591225

Keywords

Navigation