Skip to main content
Log in

The evolution of longitudinal and transverse acoustic waves in a medium with paramagnetic impurities

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the bipartial interaction of longitudinal and transverse acoustic pulses with a system of paramagnetic impurities with an effective spin S=1/2 in a crystalline layer or on a surface in the presence of an arbitrarily directed external constant magnetic field. We derive a new system of evolution equations that describes this interaction and show that, in the absence of losses, for equal phase velocities of these acoustic components, and under the condition of their unidirectional propagation, the original system reduces to a new integrable system of equations. The derived integrable system describes the pulse dynamics outside the scope of the slow-envelope approximation. For one of the reductions of the general model that corresponds to the new integrable model, we give the corresponding equations of the inverse scattering transform method and find soliton solutions. We investigate the dynamics and formation conditions of the phonon avalanche that arises when the initial completely or incompletely inverted state of the spin system decays. We discuss the application of our results to describing the interaction dynamics of spins and acoustic pulses in various systems with an external magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  2. A. I. Maimistov, Kvantovaya Élektron. (Moscow) 30, 287 (2000).

    Google Scholar 

  3. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

    Google Scholar 

  4. H.-Y. Hao and H. J. Maris, Phys. Rev. B 64, 064302 (2001).

    Google Scholar 

  5. G. A. Denisenko, Zh. Éksp. Teor. Fiz. 60, 2269 (1971) [Sov. Phys. JETP 33, 1220 (1971)].

    Google Scholar 

  6. G. T. Adamashvili, Zh. Éksp. Teor. Fiz. 97, 235 (1990) [Sov. Phys. JETP 70, 131 (1990)].

    Google Scholar 

  7. S. V. Voronkov and S. V. Sazonov, Fiz. Tverd. Tela (St. Petersburg) 43, 1969 (2001) [Phys. Solid State 43, 2051 (2001)].

    Google Scholar 

  8. S. V. Voronkov and S. V. Sazonov, Zh. Éksp. Teor. Fiz. 120, 269 (2001) [JETP 93, 236 (2001)].

    Google Scholar 

  9. P. A. Fedders, Phys. Rev. B 12, 2046 (1975).

    ADS  Google Scholar 

  10. G. T. Adamashvili, Physica B (Amsterdam) 266, 173 (1999).

    ADS  Google Scholar 

  11. N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

    Article  ADS  Google Scholar 

  12. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov, Pis’ma Zh. Éksp. Teor. Fiz. 20, 644 (1974) [JETP Lett. 20, 296 (1974)].

    Google Scholar 

  13. H. W. de Wijn, P. A. van Walree, and A. F. M. Arts, Physica B (Amsterdam) 263–264, 30 (1999).

    Google Scholar 

  14. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, Physica B (Amsterdam) 316–317, 311 (2002).

    Google Scholar 

  15. A. A. Zabolotskii, Pis’ma Zh. Éksp. Teor. Fiz. 76, 709 (2002) [JETP Lett. 76, 607 (2002)].

    Google Scholar 

  16. C. Kittel, Introduction to Solid State Physics, 4th ed. (Wiley, New York, 1971; Nauka, Moscow, 1974).

    Google Scholar 

  17. M. K. Balakirev and I. A. Gilinskii, Waves in Piezoelectric Crystals (Nauka, Novosibirsk, 1982).

    Google Scholar 

  18. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972; Mir, Moscow, 1975).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity, 3rd ed. (Nauka, Moscow, 1987; Pergamon, New York, 1986).

    Google Scholar 

  20. S. A. Al’tshuller and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements, 3rd ed. (Nauka, Moscow, 1981; Halsted, New York, 1975).

    Google Scholar 

  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  22. M. Agrotis, N. M. Ercolani, S. A. Glasgow, and J. V. Moloney, Physica D (Amsterdam) 138, 134 (2000).

    ADS  MathSciNet  Google Scholar 

  23. J. D. Gibbon, P. J. Coudrey, J. K. Eilbeck, and R. K. Bullough, J. Phys. A: Math. Gen. 6, 1237 (1973).

    Google Scholar 

  24. A. E. Borovik and S. I. Kulinich, Pis’ma Zh. Éksp. Teor. Fiz. 39, 320 (1984) [JETP Lett. 39, 384 (1984)].

    Google Scholar 

  25. A. A. Zabolotskii, Physica D (Amsterdam) 40, 283 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  26. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 115, 1158 (1999) [JETP 88, 642 (1999)].

    Google Scholar 

  27. L. A. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986; Springer, Berlin, 1987).

    Google Scholar 

  28. A. C. Newell, Solitons in Mathematics and Physics (SIAM, Philadelphia, PA, 1985; Mir, Moscow, 1989), CBMS-NSF Regional Conference Series, Vol. 48.

    Google Scholar 

  29. J. Leon and A. V. Mikhailov, Phys. Lett. A 53, 33 (1999); M. Boiti, J.-G. Caputo, J. Leon, and F. Pempinelli, Inverse Probl. 16, 303 (2000).

    ADS  Google Scholar 

  30. A. Fokas, J. Math. Phys. 41, 4188 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. A. Degasperis, S. V. Manakov, and P. M. Santini, nlin.SI/0210058.

  32. A. V. Khaetskii, Physica E (Amsterdam) 10, 27 (2001).

    ADS  Google Scholar 

  33. E. del Barco, J. M. Hernández, M. Sales, et al., Phys. Rev. B 60, 11898 (1999).

  34. I. V. Cherednik, Teor. Mat. Fiz. 47, 755 (1981).

    MathSciNet  Google Scholar 

  35. A. M. Mikhailov, Phys. Lett. A 92, 51 (1982).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 6, 2003, pp. 1239–1255.

Original Russian Text Copyright © 2003 by Zabolotski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, A.A. The evolution of longitudinal and transverse acoustic waves in a medium with paramagnetic impurities. J. Exp. Theor. Phys. 96, 1089–1103 (2003). https://doi.org/10.1134/1.1591220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1591220

Keywords

Navigation