Skip to main content
Log in

Magnetic properties of defects in spin-gap magnets

  • Scientific Summaries
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The magnetic properties of defects were studied in spin-gap magnets such as spin-Peierls magnet CuGeO3, Haldane magnet PbNi2V2O8, and charge-ordered ladder magnet NaV2O5. Doping of these systems with nonmagnetic impurities leads to additional magnetic degrees of freedom, which manifest themselves at low temperatures, where the intrinsic magnetic susceptibility of a spin-gap system is close to zero. Magnetic susceptibility appears due to the local destruction of the singlet ground state as a result of impurity-induced breakage of spin chains. Antiferromagnetically correlated areas arise near the spin-chain breaks. The sizes of these areas and the effective spin of these specific spin clusters are estimated. The order parameter and its spatially modulated depth are determined for impurity-induced magnetically ordered phases. The magnetic properties of defects for the NaV2O5 ladder structure are explained in the model of electrons “hopping” near the chain break. The hopping degree of freedom effectively influences the total spin of a spin-chain fragment and magnetization of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bethe, Z. Phys. 71, 205 (1931).

    ADS  MATH  Google Scholar 

  2. J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).

    ADS  Google Scholar 

  3. F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. S. V. Meshkov, Phys. Rev. B 48, 6167 (1993).

    Article  ADS  Google Scholar 

  5. L. N. Bulaevskii, Fiz. Tverd. Tela (Leningrad) 11, 1132 (1969) [Sov. Phys. Solid State 11, 921 (1969)].

    Google Scholar 

  6. A. W. Garrett, S. E. Nagler, D. A. Tennant, et al., Phys. Rev. Lett. 79, 745 (1997).

    Article  ADS  Google Scholar 

  7. M. Hase, I. Terasaki, and K. Uchinokura, Phys. Rev. Lett. 70, 3651 (1993).

    Article  ADS  Google Scholar 

  8. E. Pytte, Phys. Rev. B 10, 4637 (1974).

    ADS  Google Scholar 

  9. E. Dagotto and T. M. Rice, Science 271, 618 (1996).

    ADS  Google Scholar 

  10. H. Kageyama, K. Yoshimura, R. Stern, et al., Phys. Rev. Lett. 82, 3168 (1999).

    ADS  Google Scholar 

  11. H. Fukuyama, T. Tanimoto, and M. Saito, J. Phys. Soc. Jpn. 65, 1182 (1996).

    Google Scholar 

  12. S. Miyashita and S. Yamamoto, Phys. Rev. B 48, 913 (1993).

    Article  ADS  Google Scholar 

  13. E. F. Shender and S. A. Kivelson, Phys. Rev. Lett. 66, 2384 (1991).

    Article  ADS  Google Scholar 

  14. L. P. Regnault, J. P. Renard, G. Dhalenne, and A. Revcolevschi, Europhys. Lett. 32, 579 (1995).

    Google Scholar 

  15. Y. Uchiyama, Y. Sasago, I. Tsukada, et al., Phys. Rev. Lett. 83, 632 (1999).

    Article  ADS  Google Scholar 

  16. A. Oosawa, T. Ono, and H. Tanaka, Phys. Rev. B 66, 020405 (2002).

  17. M. Honda, T. Shibata, K. Kindo, et al., J. Phys. Soc. Jpn. 65, 691 (1996).

    Google Scholar 

  18. V. N. Glazkov, A. I. Smirnov, O. A. Petrenko, et al., J. Phys.: Condens. Matter 10, 7879 (1998).

    Article  ADS  Google Scholar 

  19. M. I. Belinskii, B. S. Tsukerblat, and A. V. Ablov, Fiz. Tverd. Tela (Leningrad) 16, 989 (1974) [Sov. Phys. Solid State 16, 639 (1974)].

    Google Scholar 

  20. V. N. Glazkov, R. M. Eremina, A. I. Smirnov, et al., Zh. Éksp. Teor. Fiz. 120, 164 (2001) [JETP 93, 143 (2001)].

    Google Scholar 

  21. P. W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).

    Google Scholar 

  22. M. Hagiwara, K. Katsumata, I. Affleck, et al., Phys. Rev. Lett. 65, 3181 (1990).

    Article  ADS  Google Scholar 

  23. T. Kennedy, J. Phys.: Condens. Matter 2, 5737 (1990).

    ADS  Google Scholar 

  24. S. A. Altshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Nauka, Moscow, 1972; Halsted, New York, 1975).

    Google Scholar 

  25. A. I. Smirnov, V. N. Glazkov, H.-A. Krug von Nidda, et al., Phys. Rev. B 65, 174422 (2002).

  26. A. Zheludev, T. Masuda, I. Tsukada, et al., Phys. Rev. B 62, 8921 (2000).

    Article  ADS  Google Scholar 

  27. V. N. Glazkov, A. I. Smirnov, K. Uchinokura, and T. Masuda, Phys. Rev. B 65, 144427 (2002).

    Google Scholar 

  28. V. K. S. Shante and S. Kirkpatrick, Adv. Phys. 20, 325 (1971).

    Article  ADS  Google Scholar 

  29. C. Yasuda, S. Todo, M. Matsumoto, and H. Takayama, Phys. Rev. B 64, 092405 (2001).

    Google Scholar 

  30. M. V. Mostovoy and D. I. Khomsky, Solid State Commun. 113, 159 (2000).

    Google Scholar 

  31. S. Grenier, A. Toader, J. E. Lorenzo, et al., Phys. Rev. B 65, 180101(R) (2002).

  32. A. I. Smirnov, S. S. Sosin, R. Calemczuk, et al., Phys. Rev. B 63, 014412 (2001).

    Google Scholar 

  33. J. Bonner and M. Fisher, Phys. Rev. A 135, 640 (1964).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 77, No. 8, 2003, pp. 517–526.

Original Russian Text Copyright © 2003 by Smirnov, Glazkov, Sosin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnov, A.I., Glazkov, V.N. & Sosin, S.S. Magnetic properties of defects in spin-gap magnets. Jetp Lett. 77, 442–450 (2003). https://doi.org/10.1134/1.1587181

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1587181

PACS numbers

Navigation