Skip to main content
Log in

Calculation of profiles of CIV, NV, OVI, and SiIV resonance lines formed in accretion shocks in T Tauri stars: A plane layer

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have calculated profiles of the CIV 1550, NV 1240, OVI 1035, and SiIV 1400 resonance doublets for a plane-parallel shock viewed at various angles. Calculations were performed for the range of preshock gas velocities V 0 and gas densities ρ0 appropriate for classical T Tauri stars. The parameters of accretion shocks in young stars can be determined by comparing the calculated and observed profiles of the studied lines and their relative intensities. It is not possible to derive the parameters of the accreting gas from the line profiles without knowing the geometry of the accretion zone. The relation I v (µ,V 0,ρ 0) for a plane shock, where I v is the intensity μ=cosθ, can be used to determine the accretion parameters by either choosing a geometry for the radiating region or using a technique similar to Doppler tomography. The results obtained for DR Tau, T Tau, and RY Tau indicate that, in contrast to current concepts, the inner regions of the accretion disk are not disrupted by the magnetic field of the star, and the disk reaches the stellar surface. As a result, only a small fraction of the accreted matter passes through the shock and falls onto the star.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Lamzin, Astron. Astrophys. 295, L20 (1995).

    ADS  Google Scholar 

  2. S. A. Lamzin, Astron. Zh. 75, 367 (1998) [Astron. Rep. 42, 322 (1998)].

    Google Scholar 

  3. N. Calvet and E. Gullbring, Astrophys. J. 509, 802 (1998).

    Article  ADS  Google Scholar 

  4. G. Basri and C. Bertout, Astrophys. J. 341, 340 (1989).

    Article  ADS  Google Scholar 

  5. A. I. Gómez de Castro and S. A. Lamzin, Mon. Not. R. Astron. Soc. 304, 41 (1999).

    Google Scholar 

  6. S. A. Lamzin, Astron. Zh. 77, 373 (2000) [Astron. Rep. 44, 323 (2000)].

    Google Scholar 

  7. A. I. Gómez de Castro and E. Verdugo, Astrophys. J. 548, 976 (2001).

    ADS  Google Scholar 

  8. A. S. Kravtsova and S. A. Lamzin, Pis’ma Astron. Zh. 28, 748 (2002) [Astron. Lett. 28, 676 (2002)].

    Google Scholar 

  9. G. Beristain, S. Edwards, and J. Kwan, Astrophys. J. 551, 1037 (2001).

    Article  ADS  Google Scholar 

  10. M. S. Dimitrijevic, S. Sahal-Brechot, and M. Bommier, Astron. Astrophys., Suppl. Ser. 89, 581 (1991).

    ADS  Google Scholar 

  11. M. S. Dimitrijevic and S. Sahal-Brechot, Astron. Astrophys., Suppl. Ser. 95, 109 (1992).

    ADS  Google Scholar 

  12. M. S. Dimitrijevic and S. Sahal-Brechot, Astron. Astrophys., Suppl. Ser. 93, 359 (1992).

    ADS  Google Scholar 

  13. M. S. Dimitrijevic, S. Sahal-Brechot, and M. Bommier, Astron. Astrophys., Suppl. Ser. 89, 591 (1991).

    ADS  Google Scholar 

  14. V. V. Ivanov, Radiative Transport and the Spectra of Astronomical Bodies [in Russian] (Nauka, Moscow, 1969).

    Google Scholar 

  15. D. I. Nagirner and A. B. Shnevais, Astron. Zh. 54, 162 (1977) [Sov. Astron. 21, 91 (1977)].

    ADS  Google Scholar 

  16. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978; Mir, Moscow, 1982).

    Google Scholar 

  17. M. S. Dimitrijevic, private communication (2001).

  18. E. Landi, M. Landini, K. P. Dere, et al., Astron. Astrophys., Suppl. Ser. 135, 339 (1999).

    ADS  Google Scholar 

  19. G. Rybicky, J. Quant. Spectrosc. Radiat. Transf. 11, 589 (1971).

    ADS  Google Scholar 

  20. E. H. Avrett and D. G. Hummer, Mon. Not. R. Astron. Soc. 130, 295 (1965).

    ADS  Google Scholar 

  21. S. A. Lamzin, Pis’ma Astron. Zh. 26, 273 (2000) [Astron. Lett. 26, 225 (2000)].

    Google Scholar 

  22. S. A. Lamzin, Pis’ma Astron. Zh. 26, 683 (2000) [Astron. Lett. 26, 589 (2000)].

    Google Scholar 

  23. L. Errico, S. A. Lamzin, and A. A. Vittone, Astron. Astrophys. 357, 951 (2000).

    ADS  Google Scholar 

  24. S. A. Lamzin, A. A. Vittone, and L. Errico, Pis’ma Astron. Zh. 27, 363 (2001) [Astron. Lett. 27, 313 (2001)].

    Google Scholar 

  25. L. Errico, S. A. Lamzin, and A. A. Vittone, Astron. Astrophys. 377, 577 (2001).

    Article  ADS  Google Scholar 

  26. P. F. C. Blondel, A. Talavera, and H. R. E. T. A. Tjie, Astron. Astrophys. 268, 624 (1993).

    ADS  Google Scholar 

  27. A. S. Kravtsova and S. A. Lamzin, Pis’ma Astron. Zh. 28, 928 (2002) [Astron. Lett. 28, 835 (2002)].

    Google Scholar 

  28. N. I. Shakura and R. A. Syunyaev, Astron. Astrophys 24, 337 (1973).

    ADS  Google Scholar 

  29. G. J. Herczeg, J. L. Linsky, J. A. Valenti, et al., Astrophys. J. 572, 310 (2002).

    Article  ADS  Google Scholar 

  30. E. Wilkinson, G. M. Harper, A. Brown, and G. J. Herczeg, Astron. J. 124, 1077 (2002).

    Article  ADS  Google Scholar 

  31. C. Bertout, Ann. Rev. Astron. Astrophys. 27, 351 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 80, No. 6, 2003, pp. 542–555.

Original Russian Text Copyright © 2003 by Lamzin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamzin, S.A. Calculation of profiles of CIV, NV, OVI, and SiIV resonance lines formed in accretion shocks in T Tauri stars: A plane layer. Astron. Rep. 47, 498–510 (2003). https://doi.org/10.1134/1.1583777

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1583777

Keywords

Navigation