Skip to main content
Log in

Numerical simulations of ion and electron transport in a low-temperature dusty plasma

  • Dusty Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Charged particle transport and kinetic processes in a low-temperature dusty plasma are numerically simulated. Dust grains are represented as spheres with a given radius. The self-consistent electric field in the plasma surrounding a charged dust grain is calculated taking into account the perturbations of plasma quasineutrality near the grains. It is shown that applying an external electric field leads to a rearrangement of the plasma space charge and a break of the spherical symmetry of the electron and ion density distributions around the grain. The mutual influence of two identical charged dust grains is considered, and the energy of the electrostatic interaction between the grains is calculated. It is shown that this energy has a minimum at a certain finite distance between the grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Nefedov, O. F. Petrov, and V. E. Fortov, Usp. Fiz. Nauk 167, 1215 (1997) [Phys. Usp. 40, 1163 (1997)].

    Google Scholar 

  2. S. V. Vladimirov and M. Nambu, Phys. Rev. E 52, 2172 (1995).

    Article  ADS  Google Scholar 

  3. F. Melandso and J. Goree, Phys. Rev. E 52, 5312 (1995).

    ADS  Google Scholar 

  4. S. I. Yakovlenko, Pis’ma Zh. Tekh. Fiz. 25(16), 83 (1999) [Tech. Phys. Lett. 25, 670 (1999)].

    Google Scholar 

  5. Peilong Chen and C.-Y. D. Lu, Phys. Rev. E 61, 824 (2000).

    ADS  Google Scholar 

  6. A. F. Pal’, A. O. Serov, A. N. Starostin, et al., Zh. Éksp. Teor. Fiz. 119, 272 (2001) [JETP 92, 235 (2001)].

    Google Scholar 

  7. A. F. Pal’, D. V. Sivokhin, A. N. Starostin, et al., Fiz. Plazmy 28, 32 (2002) [Plasma Phys. Rep. 28, 28 (2002)].

    Google Scholar 

  8. V. A. Schweigert, I. V. Schweigert, A. Melzer, et al., Phys. Rev. E 54, 4155 (1996).

    Article  ADS  Google Scholar 

  9. V. I. Vladimirov, L. V. Deputatova, V. I. Molotkov, et al., Fiz. Plazmy 27, 37 (2001) [Plasma Phys. Rep. 27, 36 (2001)].

    Google Scholar 

  10. Yu. V. Petrushevich, Preprint No. 0088-A (TRINITI, Troitsk, 2002).

  11. A. Melzer, V. A. Schweigert, and A. Piel, Phys. Rev. Lett. 83, 3194 (1999).

    Article  ADS  Google Scholar 

  12. V. A. Gundienkov and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 12 (2001).

  13. A. S. Ivanov, Phys. Lett. A 290, 304 (2001).

    Article  ADS  Google Scholar 

  14. A. M. Ignatov, Fiz. Plazmy 24, 731 (1998) [Plasma Phys. Rep. 24, 677 (1998)].

    Google Scholar 

  15. A. M. Ignatov, Usp. Fiz. Nauk 171, 213 (2001) [Phys. Usp. 44, 199 (2001)].

    Google Scholar 

  16. I. E. Tamm, The Principles of Electricity Theory (Nauka, Moscow, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 6, 2003, pp. 508–515.

Original Russian Text Copyright © 2003 by Petrushevich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrushevich, Y.V. Numerical simulations of ion and electron transport in a low-temperature dusty plasma. Plasma Phys. Rep. 29, 473–479 (2003). https://doi.org/10.1134/1.1582514

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1582514

Keywords

Navigation