Technical Physics Letters

, Volume 29, Issue 5, pp 411–413 | Cite as

Electron beams formed in a diode filled with air or nitrogen at atmospheric pressure

  • S. B. Alekseev
  • V. M. Orlovskii
  • V. F. Tarasenko


We have studied the electron beam formation in a diode filled with a molecular gas at atmospheric pressure. A beam current amplitude of up to ∼20 A at an electron energy of ∼70 keV was obtained in an air-filled diode. It is suggested that the main fraction of runaway electrons at low initial values of the parameter E/p (∼0.1 kV/(cm Torr)) is formed in the space between cathode plasma and anode. As the plasma spreads from cathode to anode, the electric field strength between the plasma front and anode increases and the E/p value reaches a critical level.


Nitrogen Electron Beam Field Strength Electron Energy Critical Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. V. Tarasova and L. N. Khudyakova, Zh. Tekh. Fiz. 39, 1530 (1969) [Sov. Phys. Tech. Phys. 14, 1148 (1969)].Google Scholar
  2. 2.
    L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 19, 351 (1974)].Google Scholar
  3. 3.
    L. P. Babich and T. V. Loiko, Prib. Tekh. Éksp. 32(2), 188 (1989).Google Scholar
  4. 4.
    L. P. Babich, T. V. Loiko, and V. A. Tsukerman, Usp. Fiz. Nauk 160(7), 49 (1990) [Sov. Phys. Usp. 33, 521 (1990)].Google Scholar
  5. 5.
    Yu. E. Kolyada, Pis’ma Zh. Tekh. Fiz. 26(16), 52 (2000) [Tech. Phys. Lett. 26, 721 (2000)].Google Scholar
  6. 6.
    G. V. Kolbychev, P. D. Kolbycheva, and I. V. Ptashnik, Zh. Tekh. Fiz. 66(2), 59 (1996) [Tech. Phys. 41, 144 (1996)].Google Scholar
  7. 7.
    A. R. Sorokin, Pis’ma Zh. Tekh. Fiz. 28(9), 14 (2002) [Tech. Phys. Lett. 28, 361 (2002)].Google Scholar
  8. 8.
    A. P. Bokhan and D. E. Zakrevsky, Pis’ma Zh. Tekh. Fiz. 28(11), 21 (2002) [Tech. Phys. Lett. 28, 454 (2002)].Google Scholar
  9. 9.
    Yu. D. Korolev and G. A. Mesyats, The Physics of Pulsed Breakdown in Gases (Nauka, Moscow, 1991).Google Scholar
  10. 10.
    V. P. Gubanov, S. D. Korovin, I. V. Pegel’, et al., Izv. Vyssh. Ucheb. Zaved., Fiz., No. 12, 110 (1996).Google Scholar
  11. 11.
    F. Ya. Zagulov, A. S. Kotov, V. G. Shpak, et al., Prib. Tekh. Éksp. 32(2), 146 (1989).Google Scholar
  12. 12.
    É. I. Asinovskii, V. V. Markovets, D. N. Polyakov, et al., Teplofiz. Vys. Temp. 23, 606 (1985).Google Scholar
  13. 13.
    P. N. Dashuk and S. L. Kulakov, Pis’ma Zh. Tekh. Fiz. 5(2), 69 (1979) [Sov. Tech. Phys. Lett. 5, 26 (1979)].Google Scholar
  14. 14.
    L. P. Babich, E. N. Donskoy, R. L. Il’kaev, et al., Dokl. Akad. Nauk 382, 31 (2002) [Dokl. Phys. 46 (8), 536 (2002)].Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • S. B. Alekseev
    • 1
  • V. M. Orlovskii
    • 1
  • V. F. Tarasenko
    • 1
  1. 1.Institute of High-Current Electronics, Siberian Division RussianAcademy of SciencesTomskRussia

Personalised recommendations