Skip to main content
Log in

Samarium atom yield under electron-stimulated desorption from oxidized tungsten surface

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The yield of samarium (Sm) atoms under electron stimulated desorption from Sm layers adsorbed on the surface of oxidized tungsten was studied as a function of incident electron energy, surface coverage by samarium, degree of tungsten oxidation, and substrate temperature. The measurements were conducted by the time-of-flight technique with a surface ionization detector in the substrate temperature interval from 140 to 600 K. The yield vs. incident electron energy function has a resonance character. Overlapping resonance peaks of Sm atoms are observed at electron energies of 34 and 46 eV, which may be related to excitation of the Sm 5p and 5s levels. The Sm yield is a complex function of samarium coverage and substrate temperature. Sm atom peaks occur only in the Sm coverage range from 0 to 0.2 monolayers (ML), in which the yield passes through a maximum. The shape of the yield temperature dependence is a function of Sm coverage. For low Sm cover-ages (<0.07 ML), the yield decreases slowly with the temperature increasing to 270 K, after which it drops to zero at temperatures above 360 K. At higher coverages, the Sm yield passes through a maximum with increasing temperature and additional peaks appear at electron energies of 42, 54, and 84 eV, which can be assigned to excitation of the tungsten 5p and 5s levels. These peaks are most likely associated with desorption of SmO molecules, whose yield reaches a maximum at an Sm coverage of about 1 ML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Ageev, Prog. Surf. Sci. 47, 55 (1994).

    Article  Google Scholar 

  2. T. E. Madey, Surf. Sci. 299/300, 824 (1994).

    Article  Google Scholar 

  3. Proceedings of the Eighth International Workshop on Desorption Induced by Electronic Transitions, DIET-8, Ed. by T. E. Madey, F. M. Zimmerman, and R. A. Bartynski (San Alfonso, USA, 1999); Surf. Sci. 451 (2000); Proceedings of the Seventh International Workshop on Desorption Induced by Electronic Transitions, DIET-7, Ed. by E. M. Williams and R. E. Palmer (Ambleside, England, 1997); Surf. Sci. 390 (1997).

    Google Scholar 

  4. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Fiz. Tverd. Tela (St. Petersburg) 39(8), 1491 (1997) [Phys. Solid State 39, 1324 (1997)].

    Google Scholar 

  5. V. N. Ageev and Yu. A. Kuznetsov, Phys. Low-Dimens. Semicond. Struct., No. 1/2, 113 (1999).

  6. B. V. Yakshinskiy and T. E. Madey, Nature 400, 643 (1999).

    Google Scholar 

  7. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Fiz. Tverd. Tela (St. Petersburg) 36(5), 1444 (1994) [Phys. Solid State 36, 790 (1994)].

    Google Scholar 

  8. V. N. Ageev and Yu. A. Kuznetsov, Pis’ma Zh. Tekh. Fiz. 26(13), 86 (2000) [Tech. Phys. Lett. 26, 579 (2000)].

    Google Scholar 

  9. V. N. Ageev, Yu. A. Kuznetsov, and T. E. Madey, J. Vac. Sci. Technol. A 19(4), 1481 (2001).

    Article  ADS  Google Scholar 

  10. G. V. Tsyganova, N. Yu. Pasechnik, and N. N. Smirnova, Vysokochist. Veshchestva, No. 2, 43 (1991).

  11. CRC Handbook of Chemistry and Physics (CRC, Boca Ration, FL, 1992), pp. 10–12.

  12. V. K. Medvedev, Candidate’s Dissertation (Leningrad State Univ., Leningrad, 1974).

  13. V. N. Ageev, O. P. Burmistrova, and Yu. A. Kuznetsov, Fiz. Tverd. Tela (Leningrad) 29(6), 1740 (1987) [Sov. Phys. Solid State 29, 1000 (1987)].

    Google Scholar 

  14. V. N. Ageev and N. I. Ionov, Fiz. Tverd. Tela (Leningrad) 11(11), 3200 (1969) [Sov. Phys. Solid State 11, 2593 (1969)].

    Google Scholar 

  15. V. N. Ageev and E. Yu. Afanas’eva, Fiz. Tverd. Tela (St. Petersburg) (in press).

  16. M. L. Knotek, Springer Ser. Chem. Phys. 24, 139 (1983).

    Google Scholar 

  17. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (Wiley, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  18. V. N. Ageev and Yu. A. Kuznetsov, Fiz. Tverd. Tela (St. Petersburg) 44(6), 1121 (2002) [Phys. Solid State 44, 1171 (2002)].

    Google Scholar 

  19. V. N. Ageev, Yu. A. Kuznetsov, and N. D. Potekhina, Fiz. Tverd. Tela (St. Petersburg) 43(10), 1894 (2001) [Phys. Solid State 43, 1972 (2001)].

    Google Scholar 

  20. M. V. Loginov and M. A. Mittsev, Fiz. Tverd. Tela (Leningrad) 20, 2781 (1978) [Sov. Phys. Solid State 20, 1603 (1978)]; A. Lohani and V. Bhattacharyya, J. Electron Spectrosc. Relat. Phenom. 122, 79 (2002).

    Google Scholar 

  21. F. P. Netzer, G. Strasser, G. Rosina, and J. A. D. Matthew, J. Phys. F 15, 753 (1985).

    Article  ADS  Google Scholar 

  22. D. H. Tracy, Proc. R. Soc. London, Ser. A 357, 485 (1977).

    ADS  Google Scholar 

  23. A. Mori, Y. Kayanuma, and A. Kotani, Prog. Theor. Phys. Suppl. 106, 75 (1991).

    Google Scholar 

  24. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed. (Clarendon, Oxford, 1948; Inostrannaya Literatura, Moscow, 1950).

    Google Scholar 

  25. J. T. Waber and D. T. Grower, J. Chem. Phys. 42, 4116 (1965).

    Article  Google Scholar 

  26. P. R. Antoniewicz, Phys. Rev. B 21(9), 3811 (1980).

    Article  ADS  Google Scholar 

  27. C. B. Weare and J. A. Yarmoff, Surf. Sci. 348, 369 (1996).

    Article  Google Scholar 

  28. D. G. Goryunov, A. G. Borisov, G. E. Makhmetov, et al., Surf. Sci. 401, 206 (1998).

    Article  Google Scholar 

  29. A. G. Borisov and J. P. Ganyacq, Surf. Sci. 445, 430 (2000).

    Article  Google Scholar 

  30. D. Woodruff and T. Delchar, Modern Techniques of Space Science (Cambridge Univ. Press, Cambridge, 1986; Mir, Moscow, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 5, 2003, pp. 930–936.

Original Russian Text Copyright © 2003 by Ageev, Kuznetsov, Potekhina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ageev, V.N., Kuznetsov, Y.A. & Potekhina, N.D. Samarium atom yield under electron-stimulated desorption from oxidized tungsten surface. Phys. Solid State 45, 976–982 (2003). https://doi.org/10.1134/1.1575348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1575348

Keywords

Navigation