Skip to main content
Log in

Linear noise approximation method for calculating nonequilibrium fluctuations of the occupation numbers in radiative-collisional average ion models

  • Plasma Kinetics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A novel method is proposed for calculating nonequilibrium fluctuations of the mean occupation numbers of the electron shells in the radiative-collisional average-ion models of multicharged plasma kinetics. For the class of Slater ionic models, equations are derived for the mean occupation numbers of the electron shells and their fluctuations in the Fokker-Planck approximation. To calculate the fluctuations, the Fokker-Planck equation is linearized in the vicinity of the steady-state nonequilibrium solution to the kinetic equations (linear noise approximation). The method proposed allows one to take into account both the nonequilibrium correlations of the occupation-number fluctuations and the thermodynamically equilibrium statistical correlations related to the Coulomb interaction among bound electrons. The relation among the coefficients in the Fokker-Planck equation for the occupation-number fluctuations of the electron shells is discussed based on the fluctuation-dissipative theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Ivanov, Radiation Transfer and Spectra of Selestial Bodies (Nauka, Moscow, 1969).

    Google Scholar 

  2. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Kinetics of Nonequilibrium Low-Temperature Plasmas (Nauka, Moscow, 1982; Consultans Bureau, New York, 1987).

    Google Scholar 

  3. D. Mihalas, Stellar Atmospheres (W. H. Freeman and Co., San Francisco, 1978; Mir, Moscow, 1982).

    Google Scholar 

  4. D. R. Bates and A. Damgaard, Philos. Trans. 242, 101 (1949).

    ADS  Google Scholar 

  5. R. P. Feynman, N. Metropolis, and E. Teller, Phys. Rev. 75, 1561 (1949).

    Article  ADS  Google Scholar 

  6. D. E. Post and R. V. Jensen, At. Data Nucl. Data Tables 20, 397 (1977).

    Article  ADS  Google Scholar 

  7. I. I. Sobel’man, Atomic Spectra and Radiation Transitions (Nauka, Moscow, 1977; Springer-Verlag, Berlin, 1979).

    Google Scholar 

  8. L. P. Presnyakov, V. P. Shevel’ko, and R. K. Yanev, Elementary Processes with the Participation of Multiply Charged Ions (Énergoatomizdat, Moscow, 1986).

    Google Scholar 

  9. L. M. Biberman, Zh. Éksp. Teor. Fiz. 17, 416 (1947).

    Google Scholar 

  10. W. Unno, Publ. Astron. Soc. Jpn. 3, 158 (1952).

    ADS  Google Scholar 

  11. D. G. Hammer, Mon. Not. R. Astron. Soc. 125, 21 (1962).

    ADS  Google Scholar 

  12. V. A. Makhrov, A. Yu. Sechin, and A. N. Starostin, Zh. Éksp. Teor. Fiz. 97, 1114 (1990) [Sov. Phys. JETP 70, 623 (1990)].

    ADS  Google Scholar 

  13. T. Blenski and S. Morel, Laser Part. Beams 13, 255 (1995).

    Google Scholar 

  14. C. Bauche-Arnoult, J. Bauche, and M. Klapisch, Adv. At. Mol. Phys. 23, 131 (1988).

    Google Scholar 

  15. A. Bar-Shalom, J. Oreg, W. H. Goldstein, et al., Phys. Rev. A 40, 3183 (1989).

    Article  ADS  Google Scholar 

  16. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of High-Temperature Plasma. Methods for Calculating Rosseland’s Runs and Equations of State (Fizmatlit, Moscow, 2000).

    Google Scholar 

  17. S. A. Moscowski, Prog. Theor. Phys. 28, 1 (1961).

    ADS  Google Scholar 

  18. S. Kiyokawa, T. Yabe, and T. Mochizuki, J. Appl. Phys. 22, 1772 (1983).

    Google Scholar 

  19. V. Cohn and P. Vashishta, Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundquist and N. March (Plenum Press, New York, 1983; Mir, Moscow, 1987).

    Google Scholar 

  20. D. A. Liberman, J. Quant. Spectrosc. Radiat. Transf. 27, 335 (1982).

    Article  ADS  Google Scholar 

  21. M. C. Dharma-Wardana and F. Perrot, Phys. Rev. A 26, 2096 (1982).

    Article  ADS  Google Scholar 

  22. R. M. More, Adv. At. Mol. Phys. 21, 305 (1985).

    Google Scholar 

  23. T. Blenski and B. Cichocki, Phys. Rev. A 41, 6973 (1990).

    ADS  Google Scholar 

  24. G. Faussurier, C. Blancard, and A. Decoster, Phys. Rev. E 56, 3474 (1997).

    ADS  Google Scholar 

  25. G. Faussurier, C. Blancard, and A. Decoster, Phys. Rev. E 56, 3488 (1997).

    ADS  Google Scholar 

  26. J. C. Slater, Phys. Rev. 36, 57 (1930).

    Article  ADS  MATH  Google Scholar 

  27. D. Layzer, Ann. Phys. (New York) 8, 271 (1959).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. M. More, J. Quant. Spectrosc. Radiat. Transf. 27, 345 (1982).

    Article  ADS  Google Scholar 

  29. G. Faussurier, C. Blancard, and A. Decoster, J. Quant. Spectrosc. Radiat. Transf. 58, 233 (1997).

    Google Scholar 

  30. J. Stein, D. Shalitin, and A. Ron, Phys. Rev. A 31, 446 (1985).

    Article  ADS  Google Scholar 

  31. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1984; Vysshaya Shkola, Moscow, 1990).

    Google Scholar 

  32. S. A. Bel’kov, P. D. Gasparian, G. V. Dolgolyova, and Yu. K. Kochubey, J. Quant. Spectrosc. Radiat. Transf. 58, 471 (1997).

    Google Scholar 

  33. S. A. Bel’kov, P. D. Gasparyan, Yu. K. Kochubey, and E. I. Mitrofanov, Zh. Éksp. Teor. Fiz. 111, 496 (1997) [JETP 84, 272 (1997)].

    Google Scholar 

  34. P. D. Gasparian, S. A. Bel’kov, Yu. K. Kochubey, et al., Strongly Coupled Coulomb Systems, Ed. by G. J. Kalman, J. M. Rommel, and K. Blagoev (Plenum, New York, 1998).

    Google Scholar 

  35. G. B. Zimmerman and R. M. More, J. Quant. Spectrosc. Radiat. Transf. 23, 517 (1980).

    Article  ADS  Google Scholar 

  36. R. M. More, K. H. Warren, D. A. Young, and G. B. Zimmerman, Phys. Fluids 31, 3059 (1988).

    Article  ADS  Google Scholar 

  37. B. A. Voinov, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, No. 2, 65 (1986).

  38. R. M. More, G. B. Zimmerman, and Z. Zinamon, in Proceedings of the 6th AIP Conference on Atomic Processes in High-Temperature Plasmas, Santa Fe, 1987, Ed. by A. Hauer and A. Merts, p. 33.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 5, 2003, pp. 458–475.

Original Russian Text Copyright © 2003 by Gasparyan, Gorshikhin..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gasparyan, P.D., Gorshikhin, A.A. Linear noise approximation method for calculating nonequilibrium fluctuations of the occupation numbers in radiative-collisional average ion models. Plasma Phys. Rep. 29, 425–442 (2003). https://doi.org/10.1134/1.1575312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1575312

Keywords

Navigation