Skip to main content
Log in

A charge-consistent model for the acceleration of iron in the solar corona: Nonisothermal injection

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A charge-consistent numerical model for the joint (regular and stochastic) acceleration of iron by a spherical shock wave propagating in the solar corona is proposed. Large-scale irregularities of the plasma density and the nonisothermal injection of ions are taken into account. For the case of iron, the energy dependence of the mean charge q Fe(E) is determined by the relationships between the characteristic acceleration time, the charge-variation time for the accelerated ions, and the time for their trapping in regions of high plasma density. Due to the global inhomogeneity of the medium, these relationships depend on the shock speed. Our calculations indicate that photoionization by soft X-rays from flare regions can substantially change the charge states of heavy ions only in the most powerful solar events (both impulsive and gradual).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Luhn, B. Klecker, D. Hovestadt, et al., Adv. Space Res. 4, 161 (1984).

    ADS  Google Scholar 

  2. A. M. Luhn, D. Hovestadt, B. Klecker, et al., Proceedings of 19th International Cosmic Ray Conference (NASA Goddard Space Flight Center, 1985), Vol. 4, p. 241.

    Google Scholar 

  3. G. M. Mason, J. E. Mazur, M. D. Looper, and R. A. Mewaldt, Astrophys. J. 452, 901 (1995).

    Article  ADS  Google Scholar 

  4. A. J. Tylka, P. R. Boberg, J. H. Adams, et al., Astrophys. J. 444, L109 (1995).

    Article  ADS  Google Scholar 

  5. M. Oetliker, B. Klecker, D. Hovestadt, et al., Astrophys. J. 477, 495 (1997).

    Article  ADS  Google Scholar 

  6. J. E. Mazur, G. M. Mason, M. D. Looper, et al., Geophys. Res. Lett. 26, 173 (1999).

    Article  ADS  Google Scholar 

  7. E. Möbius, M. Popecki, B. Klecker, et al., Geophys. Res. Lett. 26, 145 (1999).

    ADS  Google Scholar 

  8. I. G. Kurganov and V. M. Ostryakov, Pis’ma Astron. Zh. 17, 177 (1991) [Sov. Astron. Lett. 17, 77 (1991)].

    ADS  Google Scholar 

  9. Yu. Yu. Kartavykh, V. M. Ostryakov, I. Yu. Stepanov, and M. Yoshimori, Kosm. Issled. 36, 465 (1998).

    Google Scholar 

  10. V. M. Ostryakov and M. F. Stovpyuk, Pis’ma Astron. Zh. 25, 935 (1999) [Astron. Lett. 25, 819 (1999)].

    Google Scholar 

  11. V. M. Ostryakov and M. F. Stovpyuk, Sol. Phys. 189, 357 (1999).

    Article  ADS  Google Scholar 

  12. A. F. Barghouty and R. A. Mewaldt, Astrophys. J. 520, L127 (1999).

    Article  ADS  Google Scholar 

  13. V. M. Ostryakov, Yu. Yu. Kartavykh, D. Ruffolo, et al., J. Geophys. Res. 105(A12), 27315 (2000).

    Article  ADS  Google Scholar 

  14. M. F. Stovpyuk and V. M. Ostryakov, Sol. Phys. 198, 163 (2001).

    Article  ADS  Google Scholar 

  15. M. F. Stovpyuk and V. M. Ostryakov, Adv. Space Res. 26, 503 (2001).

    ADS  Google Scholar 

  16. L. Kocharov, G. A. Kovaltsov, J. Torsti, and V. M. Ostryakov, Astron. Astrophys. 357, 716 (2000).

    ADS  Google Scholar 

  17. A. M. Luhn and D. Hovestadt, Astrophys. J. 317, 852 (1987).

    ADS  Google Scholar 

  18. M. Arnaud and J. Raymond, Astrophys. J. 398, 394 (1992).

    Article  ADS  Google Scholar 

  19. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).

    Google Scholar 

  20. E. G. Berezhko, V. K. Elshin, G. F. Krymskii, and S. N. Petukhov, The Generation of Cosmic Rays by Shock Waves [in Russian] (Nauka, Novosibirsk, 1988).

    Google Scholar 

  21. M. Ostrowski and R. Schlickeiser, Astron. Astrophys. 268, 818 (1993).

    ADS  Google Scholar 

  22. I. N. Toptygin, Pis’ma Astron. Zh. 25, 930 (1999) [Astron. Lett. 25, 814 (1999)].

    Google Scholar 

  23. M. A. Lee and J. M. Ryan, Astrophys. J. 303, 829 (1986).

    Article  ADS  Google Scholar 

  24. E. G. Berezhko, S. N. Petukhov, and S. N. Taneev, Izv. Akad. Nauk, Ser. Fiz. 65, 339 (2001).

    Google Scholar 

  25. S. A. Kaplan, Astron. Zh. 44, 384 (1967) [Sov. Astron. 11, 302 (1967)].

    ADS  Google Scholar 

  26. S. T. Wu, Space Sci. Rev. 32, 115 (1982).

    ADS  Google Scholar 

  27. A. Maxwell and M. Dryer, Space Sci. Rev. 32, 11 (1982).

    Article  ADS  Google Scholar 

  28. E. C. Sittler and M. Guhathakurta, Astrophys. J. 523, 812 (1999).

    ADS  Google Scholar 

  29. K. Hasselmann and G. Wibberenz, Z. Geophys. 34, 353 (1968).

    Google Scholar 

  30. A. A. Korchak, Sol. Phys. 66, 149 (1980).

    Article  ADS  Google Scholar 

  31. S. Pinter, Space Sci. Rev. 32, 145 (1982).

    ADS  Google Scholar 

  32. G. E. Kocharov, V. P. Lazutkov, G. A. Matveev, et al., Astron. Zh. 76, 547 (1999) [Astron. Rep. 43, 475 (1999)].

    Google Scholar 

  33. A. J. Tylka, J. Geophys. Res. 106(A11), 25333 (2001).

    Article  ADS  Google Scholar 

  34. Yu. Yu. Kartavykh, V. M. Ostryakov, D. Ruffolo, et al., in Proc. 27th International Cosmic Ray Conference (Hamburg, 2001), Vol. 8, p. 3091.

    ADS  Google Scholar 

  35. A. Achterberg and W. M. Krulls, Astron. Astrophys. 265, L13 (1992).

    ADS  Google Scholar 

  36. J. G. Kirk and P. Schneider, Astrophys. J. 322, 256 (1987).

    Article  ADS  Google Scholar 

  37. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, Berlin, 1985; Mir, Moscow, 1986).

    Google Scholar 

  38. H. Gould and J. Tobochnik, An Introduction to Computer Simulation Methods. Application to Physical Systems (Addison-Wesley, USA Reading, 1988; Mir, Moscow, 1990).

    Google Scholar 

  39. M. G. Baring, D. C. Ellison, and F. C. Jones, Astrophys. J., Suppl. Ser. 90, 547 (1994).

    ADS  Google Scholar 

  40. D. C. Ellison and D. Eichler, Astrophys. J. 286, 691 (1984).

    Article  ADS  Google Scholar 

  41. F. C. Jones and D. C. Ellison, Astrophys. Space Sci. 58, 259 (1991).

    Google Scholar 

  42. S. S. Murray, E. S. Stone, and R. E. Vogt, Phys. Rev. Lett. 26, 663 (1971).

    Article  ADS  Google Scholar 

  43. M. F. Stovpyuk and V. M. Ostryakov, Astron. Zh. 77, 944 (2000) [Astron. Rep. 44, 833 (2000)].

    Google Scholar 

  44. L. Kocharov, G. A. Kovaltsov, and J. Torsti, Astrophys. J. 556, 919 (2001).

    Article  ADS  Google Scholar 

  45. D. J. Mullan and W. L. Waldron, Astrophys. J. 308, L21 (1986).

    Article  ADS  Google Scholar 

  46. A. A. Kharchenko and V. M. Ostryakov, in Proc. 20th International Cosmic Ray Conference (Moscow, 1987), Vol. 3, p. 248.

    Google Scholar 

  47. D. A. Verner and D. G. Yakovlev, Astron. Astrophys., Suppl. Ser. 109, 125 (1995).

    ADS  Google Scholar 

  48. C. J. Crannell, K. J. Frost, C. Mätzler, et al., Astrophys. J. 223, 620 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 80, No. 4, 2003, pp. 374–384.

Original Russian Text Copyright © 2003 by Stovpyuk, Ostryakov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stovpyuk, M.F., Ostryakov, V.M. A charge-consistent model for the acceleration of iron in the solar corona: Nonisothermal injection. Astron. Rep. 47, 343–353 (2003). https://doi.org/10.1134/1.1568138

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1568138

Keywords

Navigation