Skip to main content
Log in

Pseudogaps in incommensurate charge density waves and one-dimensional semiconductors

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider pseudogap effects for electrons interacting with gapless modes. We study generic 1D semiconductors with acoustic phonons and incommensurate charge density waves. We calculate the subgap absorption as it can be observed by means of photoelectron or tunneling spectroscopy. Within the formalism of functional integration and adiabatic approximation, the probabilities are described by nonlinear configurations of an instanton type. Particularities of both cases are determined by the topological nature of stationary excited states (acoustic polarons or amplitude solitons) and by the presence of gapless phonons that change the usual dynamics to the quantum dissipation regime. Below the free-particle edge, the pseudogap starts with an exponential (stretched exponential for gapful phonons) decrease of the transition rates. Deeply within the pseudogap, they are dominated by a power law, in contrast to a nearly exponential law for gapful modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Matveenko and S. A. Brazovskii, Phys. Rev. B 65, 245108 (2002).

    Google Scholar 

  2. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

    Article  ADS  Google Scholar 

  3. P. A. Lee, T. M. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462 (1973).

    ADS  Google Scholar 

  4. S. Brazovskii and I. Dzyaloshinskii, Zh. Éksp. Teor. Fiz. 71, 2338 (1976) [Sov. Phys. JETP 44, 1233 (1976)].

    Google Scholar 

  5. E. I. Rashba, in Excitons, Ed. by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam, 1982), p. 543.

    Google Scholar 

  6. A. Bjelis and S. Barisic, J. Phys. Lett. 36, L169 (1975).

    Google Scholar 

  7. M. V. Sadovskii, Zh. Éksp. Teor. Fiz. 66, 1720 (1974) [Sov. Phys. JETP 39, 845 (1974)]; Zh. Éksp. Teor. Fiz. 77, 989 (1979) [Sov. Phys. JETP 50, 989 (1979)].

    Google Scholar 

  8. S. Brazovskii, Pis’ma Zh. Éksp. Teor. Fiz. 28, 656 (1978) [JETP Lett. 28, 606 (1978)]; Zh. Éksp. Teor. Fiz. 76, 677 (1979) [Sov. Phys. JETP 51, 342 (1980)].

    Google Scholar 

  9. H. P. Geserich et al., Physica B (Amsterdam) 143, 198 (1986); L. Degiorgi, G. Grüner, K. Kim, et al., Phys. Rev. B 49, 14754 (1994); Phys. Rev. B 52, 5603 (1995).

    Google Scholar 

  10. F. Nad, in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier, Amsterdam, 1989), p. 191.

    Google Scholar 

  11. G. Minton and J. W. Brill, Phys. Rev. B 36, 4254 (1987).

    Article  ADS  Google Scholar 

  12. G.-H. Gweon, J. W. Allen, R. Claessen, et al., J. Phys.: Condens. Matter 8, 9923 (1996); A. Terrasi, M. Marsi, H. Berger, et al., Phys. Rev. B 52, 5592 (1995); Phys. Rev. B 56, 12647 (1997); L. Perfetti, H. Berger, A. Reginelli, et al., Phys. Rev. Lett. 87, 216404 (2001).

    Article  ADS  Google Scholar 

  13. R. H. McKenzie and J. W. Wilkins, Phys. Rev. Lett. 69, 1085 (1992); Phys. Rev. B 52, 16428 (1995); K. Kim, R. H. McKenzie, and J. W. Wilkins, Phys. Rev. Lett. 71, 4015 (1993).

    Article  ADS  Google Scholar 

  14. A. S. Ioselevich, Zh. Éksp. Teor. Fiz. 81, 1508 (1981) [Sov. Phys. JETP 54, 800 (1981)]; Zh. Éksp. Teor. Fiz. 82, 601 (1982) [Sov. Phys. JETP 55, 358 (1982)]; Zh. Éksp. Teor. Fiz. 83, 743 (1982) [Sov. Phys. JETP 56, 415 (1982)].

    Google Scholar 

  15. A. Auerbach and S. Kivelson, Phys. Rev. B 33, 8171 (1986).

    ADS  Google Scholar 

  16. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1989).

    Google Scholar 

  17. S. V. Iordanskii and E. I. Rashba, Zh. Éksp. Teor. Fiz. 74, 1872 (1978) [Sov. Phys. JETP 47, 975 (1978)].

    Google Scholar 

  18. S. Brazovskii and N. Kirova, Sov. Sci. Rev., Sect. A 5, 99 (1984).

    Google Scholar 

  19. S. Brazovskii, in Charge Density Waves in Solids, Ed. by L. Gor’kov and G. Grüner (Elsevier, Amsterdam, 1989), p. 425.

    Google Scholar 

  20. S. A. Brazovskii and S. I. Matveenko, Zh. Éksp. Teor. Fiz. 99, 887 (1991) [Sov. Phys. JETP 72, 492 (1991)].

    Google Scholar 

  21. A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).

    Article  ADS  Google Scholar 

  22. S. Brazovskii, E-print archives, cond-mat/0204147, cond-mat/0006355.

  23. B. Halperin, Phys. Rev. A 139, 104 (1965).

    ADS  MathSciNet  Google Scholar 

  24. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Nauka, Moscow, 1982; Wiley, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 3, 2003, pp. 625–634.

Original English Text Copyright © 2003 by Brazovskii, Matveenko.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazovskii, S.A., Matveenko, S.I. Pseudogaps in incommensurate charge density waves and one-dimensional semiconductors. J. Exp. Theor. Phys. 96, 555–563 (2003). https://doi.org/10.1134/1.1567430

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1567430

Keywords

Navigation