Skip to main content
Log in

Integrable models for the dynamics of a longitudinal-transverse acoustic wave in a crystal with paramagnetic impurities

  • Solids
  • Structure
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically study the evolution of longitudinal-transverse acoustic pulses propagating parallel to an external magnetic field in a system of resonant paramagnetic impurities with an effective spin S=1/2. For equal group velocities of the longitudinal and transverse waves, the pulse dynamics is shown to be described by evolution equations. In limiting cases, these equations reduce to equations integrable in terms of the inverse scattering transform method (ISTM). For the most general integrable system of equations that describes the dynamics of acoustic pulses outside the scope of the slow-envelope approximation, we derive the corresponding ISTM equations. These equations are used to find a soliton solution and a self-similar solution. The latter describes the leading edge of the packet of acoustic pulses generated when the initial unstable state of a spin system decays. Analysis of our solutions and models indicates that the presence of a longitudinal acoustic wave leads not only to a change in the amplitude and phase of the transverse wave but also to a qualitatively new dynamics of sound in such a medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Maimistov and A. M. Basharov, Nonlinear Optical Waves (Kluwer, Dordrecht, 1999).

    Google Scholar 

  2. A. I. Maimistov, Kvantovaya Élektron. (Moscow) 30, 287 (2000).

    Google Scholar 

  3. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: the Inverse Scattering Method (Nauka, Moscow, 1980; Consultants Bureau, New York, 1984).

    Google Scholar 

  4. H.-Y. Hao and H. J. Maris, Phys. Rev. B 64, 064302 (2001).

    Google Scholar 

  5. G. A. Denisenko, Zh. Éksp. Teor. Fiz. 60, 2269 (1971) [Sov. Phys. JETP 33, 1220 (1971)].

    Google Scholar 

  6. S. V. Voronkov and S. V. Sazonov, Fiz. Tverd. Tela (St. Petersburg) 43, 1969 (2001) [Phys. Solid State 43, 2051 (2001)].

    Google Scholar 

  7. S. V. Voronkov and S. V. Sazonov, Zh. Éksp. Teor. Fiz. 120, 269 (2001) [JETP 93, 236 (2001)].

    Google Scholar 

  8. V. A. Golenishchev-Kutuzov, V. V. Samartsev, N. K. Solovarov, and B. M. Khabibulin, Magnetic Quantum Acoustics (Nauka, Moscow, 1997).

    Google Scholar 

  9. N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

    Article  ADS  Google Scholar 

  10. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov, Pis’ma Zh. Éksp. Teor. Fiz. 20, 644 (1974) [JETP Lett. 20, 296 (1974)].

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976; Nauka, Moscow, 1974).

    Google Scholar 

  12. A. A. Zabolotskii, Phys. Lett. A 127, 83 (1988).

    Article  ADS  Google Scholar 

  13. A. A. Zabolotskii, Physica D (Amsterdam) 40, 283 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  14. A. A. Zabolotskii, Phys. Lett. A 124, 500 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. A. Zabolotskii, Phys. Rev. A 57, 2958 (1998).

    Article  ADS  Google Scholar 

  16. J. W. Tucker and V. W. Rampton, Microwave Ultrasonics in Solid State Physics (North-Holland, Amsterdam, 1972; Mir, Moscow, 1975).

    Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity, 4th ed. (Nauka, Moscow, 1987; Pergamon, New York, 1986).

    Google Scholar 

  18. S. A. Al’tshuller and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Nauka, Moscow, 1981; Halsted, New York, 1975).

    Google Scholar 

  19. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984; Nauka, Moscow, 1989).

    Google Scholar 

  20. J. D. Gibbon, P. J. Coudrey, J. K. Eilbeck, and R. K. Bullough, J. Phys. A 6, 1237 (1973).

    Google Scholar 

  21. A. E. Borovik and S. I. Kulinich, Pis’ma Zh. Éksp. Teor. Fiz. 39, 320 (1984) [JETP Lett. 39, 384 (1984)].

    Google Scholar 

  22. L. A. Takhtadzhyan and L. A. Faddeev, Hamiltonian Methods in the Theory of Solitons (Nauka, Moscow, 1986; Springer, Berlin, 1987).

    Google Scholar 

  23. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 107, 1100 (1995) [JETP 80, 614 (1995)].

    Google Scholar 

  24. A. A. Zabolotskii, Zh. Éksp. Teor. Fiz. 115, 1158 (1999) [JETP 88, 642 (1999)].

    Google Scholar 

  25. S. A. Akhmanov and V. É. Gusev, Usp. Fiz. Nauk 162, 3 (1992) [Sov. Phys. Usp. 35, 153 (1992)].

    Google Scholar 

  26. A. B. Matsko, V. V. Rostovstev, M. Flieschhauer, and M. O. Scully, Phys. Rev. Lett. 86, 2006 (2001); V. Kovalev, Phys. Rev. Lett. 88, 239301-1 (2002).

    Article  ADS  Google Scholar 

  27. S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).

    ADS  Google Scholar 

  28. S. E. Harris, Phys. Rev. Lett. 85, 4032 (2000).

    Article  ADS  Google Scholar 

  29. A. B. Matsko, Yu. V. Rostovtsev, H. Z. Cummins, and M. O. Scully, Phys. Rev. Lett. 84, 5752 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 3, 2003, pp. 560–574.

Original Russian Text Copyright © 2003 by Zabolotskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, A.A. Integrable models for the dynamics of a longitudinal-transverse acoustic wave in a crystal with paramagnetic impurities. J. Exp. Theor. Phys. 96, 496–509 (2003). https://doi.org/10.1134/1.1567424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1567424

Keywords

Navigation