Skip to main content
Log in

Behavior of Fermi systems approaching the fermion condensation quantum phase transition from the disordered phase

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

The behavior of Fermi systems that approach the fermion condensation quantum phase transition (FCQPT) from the disordered phase is considered. We show that the quasiparticle effective mass M* diverges as M* ∝ 1/¦xx FC¦, where x is the system density and x FC is the critical point at which FCQPT occurs. Such behavior is of general form and takes place in both three-dimensional (3D) and two-dimensional (2D) systems. Since the effective mass M* is finite, the system exhibits the Landau Fermi liquid behavior. At ¦xx FC¦/x FC≪1, the behavior can be viewed as highly correlated, because the effective mass is large and strongly depends on the density. In the case of electronic systems, the Wiedemann-Franz law is valid and the Kadowaki-Woods ratio is preserved. Beyond the region ¦xx FC¦/x FC≪1, the effective mass is approximately constant and the system becomes a conventional Landau Fermi liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-D. Morhard, C. Bauerle, J. Bossy, et al., Phys. Rev. B 53, 2658 (1996).

    Article  ADS  Google Scholar 

  2. A. Casey et al., J. Low Temp. Phys. 113, 293 (1998).

    Google Scholar 

  3. A. A. Shashkin, S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, Phys. Rev. B 66, 073303 (2002).

    Google Scholar 

  4. M. Pfitzner and P. Wölfe, Phys. Rev. B 33, 2003 (1986).

    Article  ADS  Google Scholar 

  5. K. Kadowaki and S. B. Woods, Solid State Commun. 58, 507 (1986).

    Article  Google Scholar 

  6. S. Nakamae et al., cond-mat/0212283.

  7. M. Ya. Amusia and V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 73, 268 (2001) [JETP Lett. 733, 232 (2001)]; S. A. Artamonov and V. R. Shaginyan, Zh. Éksp. Teor. Fiz. 119, 331 (2001) [JETP 92, 287 (2001)]; M. Ya. Amusia and V. R. Shaginyan, Phys. Rev. B 63, 224507 (2001); V. R. Shaginyan, Physica B & C (Amsterdam) 312–313, 413 (2002).

    Google Scholar 

  8. V. A. Khodel and V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 51, 488 (1990) [JETP Lett. 51, 553 (1990)]; V. A. Khodel, V. R. Shaginyan, and V. V. Khodel, Phys. Rep. 249, 1 (1994).

    Google Scholar 

  9. G. E. Volovik, Pis’ma Zh. Éksp. Teor. Fiz. 53, 208 (1991) [JETP Lett. 53, 222 (1991)].

    Google Scholar 

  10. L. D. Landau, Zh. Éksp. Teor. Fiz. 30, 1058 (1956) [Sov. Phys. JETP 3, 920 (1956)].

    Google Scholar 

  11. M. Ya. Amusia, S. A. Artamonov, and V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 74, 396 (1998) [JETP Lett. 74, 396 (2001)].

    Google Scholar 

  12. R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. USA 97, 28 (2000).

    ADS  MathSciNet  Google Scholar 

  13. P. W. Anderson, cond-mat/007185; cond-mat/0007287.

  14. V. A. Khodel, V. R. Shaginyan, and M. V. Zverev, Pis’ma Zh. Éksp. Teor. Fiz. 65, 242 (1997) [JETP Lett. 65, 253 (1997)].

  15. C. M. Varma, Z. Nussinov, and Wim van Saarloos, Phys. Rep. 361, 267 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  16. V. R. Shaginyan, cond-mat/0208568.

  17. V. A. Khodel and P. Schuck, Z. Phys. B 104, 505 (1997).

    Article  Google Scholar 

  18. M. Ya. Amusia and V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 76, 774 (2002) [JETP Lett. 76, 651 (2002)].

    Google Scholar 

  19. Yu. G. Pogorelov and V. R. Shaginyan, Pis’ma Zh. Éksp. Teor. Fiz. 76, 614 (2002) [JETP Lett. 76, 532 (2002)].

    Google Scholar 

  20. S. Inouye et al., Nature 392, 151 (1998).

    Google Scholar 

  21. M. Ya. Amusia, A. Z. Msezane, and V. R. Shaginyan, Phys. Lett. A 293, 205 (2002).

    Article  ADS  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed. (Nauka, Moscow, 1976; Addison-Wesley, Reading, MA, 1970), Part 1.

    Google Scholar 

  23. M. Ya. Amusia and V. R. Shaginyan, Eur. Phys. J. A 8, 77 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 77, No. 2, 2003, pp. 104–108.

Original English Text Copyright © 2003 by Shaginyan.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaginyan, V.R. Behavior of Fermi systems approaching the fermion condensation quantum phase transition from the disordered phase. Jetp Lett. 77, 99–103 (2003). https://doi.org/10.1134/1.1564228

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1564228

PACS numbers

Navigation