Skip to main content
Log in

On the effect of longitude-dependent fields on convection in stellar atmospheres

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

In rotating stellar convective zones, heat transfer is shown to be associated with unbalanced azimuth forces arising in the radially ascending (heated) or descending (cold) matter. The presence of a longitude-dependent magnetic field generates additional azimuth forces, hence, new ways of compensating for the unbalanced forces. Generally speaking, this magnetic field is variable but may be nearly static in layers where convective equilibrium is replaced by radiative equilibrium. The condition for the coexistence of the static and usual fields is derived. To this end, an axisymmetric azimuth magnetic field of energy comparable to the energy of rotation should be introduced into models under consideration. In such configurations, conditions for magnetic field generation, as in the Sun, may appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. N. Parker, Cosmical Magnetic Fields (Clarendon, Oxford, 1979; Mir, Moscow, 1982).

    Google Scholar 

  2. Yu. V. Vandakurov, Pis’ma Astron. Zh. 25, 868 (1999) [Astron. Lett. 25, 758 (1999)].

    Google Scholar 

  3. Yu. V. Vandakurov, Pis’ma Astron. Zh. 28, 633 (2002) [Astron. Lett. 28, 560 (2002)].

    Google Scholar 

  4. H. C. Spruit, Sol. Phys. 34, 277 (1974).

    Article  ADS  Google Scholar 

  5. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (Nauka, Leningrad, 1975; World Sci., Singapore, 1988).

    Google Scholar 

  6. Yu. V. Vandakurov, Astron. Zh. 76, 29 (1999) [Astron. Rep. 43, 24 (1999)].

    Google Scholar 

  7. Yu. V. Vandakurov, Astron. Zh. 78, 253 (2001) [Astron. Rep. 45, 216 (2001)].

    Google Scholar 

  8. Yu. V. Vandakurov, Pis’ma Astron. Zh. 25, 143 (1999) [Astron. Lett. 25, 111 (1999)].

    Google Scholar 

  9. Yu. V. Vandakurov, Zh. Tekh. Fiz. 71(6), 1 (2001) [Tech. Phys. 46, 645 (2001)].

    Google Scholar 

  10. Yu. V. Vandakurov, Astron. Zh. 74, 115 (1997) [Astron. Rep. 41, 106 (1997)].

    Google Scholar 

  11. Yu. V. Vandakurov, Pis’ma Astron. Zh. 27, 700 (2001) [Astron. Lett. 27, 596 (2001)].

    Google Scholar 

  12. Yu. V. Vandakurov, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 44, 735 (2001) [Radiophys. Quantum Electron. 44, 678 (2001)].

    Google Scholar 

  13. J. Schou, H. M. Antia, S. Basu, et al., Astrophys. J. 505, 390 (1998).

    Article  ADS  Google Scholar 

  14. R. Howe, J. Christensen-Dalsgaard, F. Hill, et al., Science 287, 2456 (2000).

    Article  ADS  Google Scholar 

  15. Yu. V. Vandakurov, Pis’ma Zh. Tekh. Fiz. 27(18), 29 (2001) [Tech. Phys. Lett. 27, 769 (2001)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 73, No. 3, 2003, pp. 23–27.

Original Russian Text Copyright © 2003 by Vandakurov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandakurov, Y.V. On the effect of longitude-dependent fields on convection in stellar atmospheres. Tech. Phys. 48, 298–302 (2003). https://doi.org/10.1134/1.1562257

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1562257

Keywords

Navigation