Skip to main content
Log in

Thermal conductivity of HgSe loaded in the pore lattice of a synthetic opal single crystal

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Samples of the opal + HgSe nanocomposite with 100% filling of the first-order opal pores by mercury selenide were prepared. The effective thermal conductivity κeff and electrical resistivity ρeff were measured in the temperature range T=5–200 K, and the thermopower coefficient α was measured in the interval 80–300 K. The coefficient α of HgSe in opal was shown to remain the same as that in bulk mercury selenide samples with similar carrier concentrations. The mechanism of carrier scattering in the HgSe loaded in opal also did not change. The total thermal conductivity κ 0tot and electrical resistivity ρ0 were isolated from κeff and ρeff, and the electronic (κ 0e ) and lattice (κ 0ph ) components of thermal conductivity of HgSe in opal were determined. The magnitude of κ 0ph was found to be considerably smaller than κph of bulk HgSe with the same carrier concentration throughout the temperature interval studied (5–200 K). For T>20 K, this behavior of κ 0ph (T) is accounted for by the presence of specific impurities and defects forming in HgSe, and for T<20 K, by the onset of boundary scattering of phonons in the bottlenecks of the horn-shaped channels connecting first-order octahedral and tetrahedral opal pores loaded by mercury selenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Bogomolov, L. S. Parfen’eva, A. V. Prokof’ev, et al., Fiz. Tverd. Tela (St. Petersburg) 37(11), 3411 (1995) [Phys. Solid State 37, 1874 (1995)].

    Google Scholar 

  2. V. N. Bogomolov, D. A. Kurdyukov, L. S. Parfen’eva, et al., Fiz. Tverd. Tela (St. Petersburg) 39(2), 392 (1997) [Phys. Solid State 39, 341 (1997)].

    Google Scholar 

  3. L. I. Arutyunyan, V. N. Bogomolov, N. F. Kartenko, et al., Fiz. Tverd. Tela (St. Petersburg) 39(3), 586 (1997) [Phys. Solid State 39, 510 (1997)].

    Google Scholar 

  4. L. I. Arutyunyan, V. N. Bogomolov, N. F. Kartenko, et al., Fiz. Tverd. Tela (St. Petersburg) 40(2), 379 (1998) [Phys. Solid State 40, 348 (1998)].

    Google Scholar 

  5. V. N. Bogomolov, N. F. Kartenko, D. A. Kurdyukov, et al., Fiz. Tverd. Tela (St. Petersburg) 41(2), 348 (1999) [Phys. Solid State 41, 313 (1999)].

    Google Scholar 

  6. V. N. Bogomolov, L. S. Parfen’eva, I. A. Smirnov, et al., Fiz. Tverd. Tela (St. Petersburg) 44(1), 170 (2002) [Phys. Solid State 44, 176 (2002)].

    Google Scholar 

  7. V. N. Bogomolov, L. S. Parfen’eva, L. M. Sorokin, et al., Fiz. Tverd. Tela (St. Petersburg) 44(6), 1017 (2002) [Phys. Solid State 44, 1061 (2002)].

    Google Scholar 

  8. V. N. Bogomolov and T. M. Pavlova, Fiz. Tekh. Poluprovodn. (St. Petersburg) 29(5–6), 826 (1995) [Semiconductors 29, 428 (1995)].

    Google Scholar 

  9. V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, et al., Kristallografiya 38(3), 111 (1993) [Crystallogr. Rep. 38, 348 (1993)].

    Google Scholar 

  10. V. V. Ratnikov, Fiz. Tverd. Tela (St. Petersburg) 39(5), 956 (1997) [Phys. Solid State 39, 856 (1997)].

    Google Scholar 

  11. T. Dietl and W. Szymanska, J. Phys. Chem. Solids 39, 1041 (1978).

    Google Scholar 

  12. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

  13. S. A. Aliev, L. L. Korenblit, and S. S. Shalyt, Fiz. Tverd. Tela (Leningrad) 8(3), 705 (1966) [Sov. Phys. Solid State 8, 565 (1966)].

    Google Scholar 

  14. S. A. Aliev, L. L. Korenblit, and S. S. Shalyt, Fiz. Tverd. Tela (Leningrad) 7(6), 1673 (1965) [Sov. Phys. Solid State 7, 1357 (1965)].

    Google Scholar 

  15. S. S. Shalyt and S. A. Aliev, Fiz. Tverd. Tela (Leningrad) 6(7), 1979 (1964) [Sov. Phys. Solid State 6, 1563 (1965)].

    Google Scholar 

  16. I. A. Smirnov and S. A. Aliev, Fiz. Tverd. Tela (Leningrad) 10(9), 2643 (1968) [Sov. Phys. Solid State 10, 2080 (1968)].

    Google Scholar 

  17. V. N. Bogomolov, L. S. Parfeneva, A. V. Prokofiev, et al., in Abstracts of 14th International Conference on Thermoelectrics (Russ. Acad. Sci., St. Petersburg, 1995), p. 83.

    Google Scholar 

  18. V. N. Bogomolov, D. A. Kurdyukov, L. S. Parfeneva, et al., in Abstracts of International Symposium on Nanostructures: Physics and Technology-96 (Russ. Acad. Sci., St. Petersburg, 1996), p. 298.

    Google Scholar 

  19. V. N. Bogomolov, L. S. Parfeneva, A. V. Prokofiev, et al., in Abstracts of 3rd Bilateral Symposium on Physics of Novel Materials (Cologne, Germany, 1997), p. 18.

  20. G. N. Dul’nev, Inzh.-Fiz. Zh. 9(3), 399 (1965).

    Google Scholar 

  21. G. N. Dul’nev and Yu. P. Zarichnyak, Thermal Conductivity of Mixtures and Composition Materials (Énergiya, Leningrad, 1974).

    Google Scholar 

  22. R. E. Meredith and C. W. Tobias, J. Appl. Phys. 31, 1270 (1960).

    Article  Google Scholar 

  23. K. W. Garrett and H. M. Rosenberg, J. Phys. D: Appl. Phys. 7, 1247 (1974).

    Article  ADS  Google Scholar 

  24. E. Ya. Litovskii, Izv. Akad. Nauk SSSR, Neorg. Mater. 16(3), 559 (1980).

    Google Scholar 

  25. D. A. Nelson, J. G. Broerman, E. C. Poxia, and C. R. Whitsett, Phys. Rev. Lett. 22(17), 884 (1969).

    Article  ADS  Google Scholar 

  26. C. R. Whitsett, D. A. Nelson, J. G. Broerman, and E. C. Paxhia, Phys. Rev. B 7(10), 4625 (1973).

    Article  ADS  Google Scholar 

  27. S. A. Aliev and D. G. Arasly, Fiz. Tekh. Poluprovodn. (Leningrad) 7(10), 2000 (1973) [Sov. Phys. Semicond. 7, 1334 (1973)].

    Google Scholar 

  28. S. M. Wasim, B. Fernández, and R. Aldana, Phys. Status Solidi A 76, 743 (1983).

    Google Scholar 

  29. I. G. Kuleev, A. T. Lonchakov, and I. Yu. Arapova, Fiz. Tekh. Poluprovodn. (St. Petersburg) 34(4), 402 (2000) [Semiconductors 34, 389 (2000)].

    Google Scholar 

  30. P. V. Gul’tyaev and A. V. Petrov, Fiz. Tverd. Tela (Leningrad) 1(3), 368 (1959) [Sov. Phys. Solid State 1, 330 (1959)].

    Google Scholar 

  31. V. I. Bogdanov, Yu. Kh. Vekilov, A. E. Kadyshevich, and A. D. Levin, Fiz. Tverd. Tela (Leningrad) 12(10), 3001 (1970) [Sov. Phys. Solid State 12, 2422 (1970)].

    Google Scholar 

  32. N. N. Sirota, N. P. Gavaleshko, V. V. Novikova, et al., Fiz. Tverd. Tela (Leningrad) 30(4), 1237 (1988) [Sov. Phys. Solid State 30, 719 (1988)].

    Google Scholar 

  33. A. Lehoczky, D. A. Nelson, and C. R. Witsett, Phys Rev. 188(3), 1069 (1969).

    Article  ADS  Google Scholar 

  34. O. M. Krasil’nikov, Yu. Kh. Vekilov, V. M. Bezborodova, and A. V. Yushin, Fiz. Tekh. Poluprovodn. (Leningrad) 4(11), 2122 (1970) [Sov. Phys. Semicond. 11, 1821 (1970)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 3, 2003, pp. 535–541.

Original Russian Text Copyright © 2003 by Bogomolov, Kartenko, Kurdyukov, Parfen’eva, Popov, Sorokin, Smirnov, Misiorek, Jezowski, Hutchison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolov, V.N., Kartenko, N.F., Kurdyukov, D.A. et al. Thermal conductivity of HgSe loaded in the pore lattice of a synthetic opal single crystal. Phys. Solid State 45, 566–572 (2003). https://doi.org/10.1134/1.1562248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1562248

Keywords

Navigation