Skip to main content
Log in

Bragg diffraction of light in synthetic opals

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Three-dimensional light diffraction from the crystal structure, formed by closely packed a-SiO2 spheres of submicron size, of samples of synthetic opals was visualized. The diffraction pattern of a monochromatic light beam was established to consist of a series of strong maxima whose number and angular position depend on the wavelength and mutual orientation of the incident beam and the crystallographic planes of the sample. The diffraction patterns were studied under oblique incidence on the (111) growth surface of the sample and with light propagated in the (111) plane in various directions perpendicular to the sample growth axis. The spectral and angular relations of diffracted intensity were studied in considerable detail in both scattering geometries. The experimental data are interpreted in terms of a model according to which the major contribution to the observed patterns is due to Bragg diffraction of light from (111)-type closely packed layers of the face-centered cubic opal lattice. The model takes into account the disorder in the alternation of the (111) layers along the sample growth axis; this disorder gives rise, in particular, to twinning of the fcc opal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Yablonovich, Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58 (23), 2486 (1987).

    ADS  Google Scholar 

  2. J. D. Joannopoulos, R. D. Mead, and J. N. Winn, Photonic Crystals (Princeton Univ. Press, Princeton, NJ, 1995).

    Google Scholar 

  3. V. N. Astratov, V. N. Bogomolov, A. A. Kaplyanskii, et al., Nuovo Cimento D 17, 1349 (1995).

    Google Scholar 

  4. Yu. A. Vlasov, V. N. Astratov, O. Z. Karimov, et al., Phys. Rev. B 55(13), 357 (1997); S. G. Romanov, A. V. Fokin, V. I. Alperovich, et al., Phys. Status Solidi A 164, 169 (1997).

    Google Scholar 

  5. A. A. Zakhidov, R. H. Baughman, Z. Iqbal, et al., Science 282, 897 (1998); V. G. Golubev, V. A. Kosobukin, D. A. Kurdyukov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 35 (6), 710 (2001) [Semiconductors 35, 680 (2001)].

    Article  ADS  Google Scholar 

  6. V. N. Bogomolov, S. V. Gaponenko, I. N. Germanenko, et al., Phys. Rev. E 55(6), 7619 (1997).

    Article  ADS  Google Scholar 

  7. S. G. Romanov, N. P. Johnson, A. V. Fokin, et al., Appl. Phys. Lett. 70(16), 2091 (1997).

    Article  ADS  Google Scholar 

  8. J. Wijnhoven and W. L. Vos, Science 281, 802 (1998).

    Article  ADS  Google Scholar 

  9. V. N. Bogomolov, A. V. Prokof’ev, and A. I. Shelykh, Fiz. Tverd. Tela (St. Petersburg) 40(4), 648 (1998) [Phys. Solid State 40, 594 (1998)].

    Google Scholar 

  10. A. Reynolds, F. López-Tejeira, D. Cassagne, et al., Phys. Rev. B 60, 11422 (1999).

    Google Scholar 

  11. M. S. Thijssen, R. Sprik, J. J. Wijnhoven, et al., Phys. Rev. Lett. 83, 2730 (1999).

    Article  ADS  Google Scholar 

  12. H. Míguez, A. Blanco, F. Meseduer, et al., Phys. Rev. B 59(3), 1563 (1999).

    Article  ADS  Google Scholar 

  13. Yu. A. Vlasov, V. N. Astratov, A. V. Baryshev, et al., Phys. Rev. E 61(5), 5784 (2000).

    ADS  Google Scholar 

  14. A. Blanco, E. Chomski, S. Grabtchak, et al., Nature 405, 437 (2000).

    ADS  Google Scholar 

  15. J. Huang, N. Eradat, M. E. Raikh, et al., Phys. Rev. Lett. 86, 4815 (2001).

    Article  ADS  Google Scholar 

  16. J. V. Sanders, Nature 204, 1151 (1964); Nature 209, 13 (1966); Acta Crystallogr. A 24, 427 (1968).

    Google Scholar 

  17. C. Dux and H. Versmold, Phys. Rev. Lett. 78(9), 1811 (1997).

    Article  ADS  Google Scholar 

  18. R. M. Amos, J. G. Rarity, and S. C. Kitson, Phys. Rev. B 61(3), 2929 (2000).

    ADS  Google Scholar 

  19. C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986; Nauka, Moscow, 1978).

    Google Scholar 

  20. L. V. Woodcock, Nature 385, 141 (1997); A. D. Bruce, N. B. Wilding, and G. J. Ackland, Phys. Rev. Lett. 79, 3002 (1977); S.-C. Mau and D. A. Huse, Phys. Rev. E 59, 4396 (1999).

    Article  Google Scholar 

  21. N. D. Deniskina, D. V. Kalinin, and L. K. Kazantseva, Precious Opals, Their Synthesis and Natural Genesis (Nauka, Novosibirsk, 1988), p. 353.

    Google Scholar 

  22. A. V. Baryshev, A. V. Ankudinov, A. A. Kaplyanskii, et al., Fiz. Tverd. Tela (St. Petersburg) 44(9), 1573 (2002) [Phys. Solid State 44, 1648 (2002)].

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media, 3rd ed. (Nauka, Moscow, 1982; Pergamon, New York, 1984).

    Google Scholar 

  24. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  25. J. C. Slater, Insulators, Semiconductors, and Metals (McGraw-Hill, New York, 1967; Mir, Moscow, 1969).

    Google Scholar 

  26. N. I. Kaliteevskii, Wave Optics, 2nd ed. (Vysshaya Shkola, Moscow, 1995), p. 344.

    Google Scholar 

  27. W. Loose and B. J. Ackerson, J. Chem. Phys. 101(9), 7211 (1994).

    Article  ADS  Google Scholar 

  28. B. K. Vainshtein, V. M. Fridkin, and V. L. Indenbom, Modern Crystallography, Vol. 2: Structure of Crystals (Nauka, Moscow, 1979; Springer, Berlin, 1982).

    Google Scholar 

  29. A. V. Ankudinov, private communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 45, No. 3, 2003, pp. 434–445.

Original Russian Text Copyright © 2003 by Baryshev, Kaplyanski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \), Kosobukin, Limonov, Samusev, Usvyat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baryshev, A.V., Kaplyanskii, A.A., Kosobukin, V.A. et al. Bragg diffraction of light in synthetic opals. Phys. Solid State 45, 459–471 (2003). https://doi.org/10.1134/1.1562231

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1562231

Keywords

Navigation