Skip to main content
Log in

New Wannier-Stark localization effects in natural 6H-SiC superlattice

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

A premature electric breakdown caused by the formation of a strong-field domain under conditions of negative differential conductivity in the 6H-SiC n +-n -n + structure optimized for ultrahigh-frequency measurements was observed in the range of electric fields corresponding to the Bloch oscillation regime in a natural 6H-SiC superlattice. The experimental results and ensuing estimates indicate that this domain is mobile and, hence, oscillating, allowing the microwave oscillations that are rapidly damped under conditions of avalanche break-down in a natural 6H-SiC superlattice to be forecasted. Crystal perfectness of a natural 6H-SiC superlattice made it possible to directly observe the Wannier-Stark localization up to electric breakdown, i.e., during the natural crystal lifetime. This was accomplished by the optical photoelectric transformation method in the multiplication regime for a photocurrent created by photons with above-bandgap energy. It was shown that the Wannier-Stark localization, which involves only electrons, occurs in natural 6H-SiC superlattice up to fields that are almost equal to the breakdown field in 6H-SiC, unresponsively to band mixing, i.e., to the fundamental destroyer of the Wannier-Stark localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bloch, Z. Phys. 52, 555 (1928); C. Zener, Proc. R. Soc. London, Ser. A 145, 523 (1934).

    MATH  Google Scholar 

  2. G. N. Wannier, Phys. Rev. 11, 432 (1960).

    ADS  MathSciNet  Google Scholar 

  3. L. Esaky and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).

    Google Scholar 

  4. E. E. Mendez, F. Agullo-Rueda, and J. M. Hong, Phys. Rev. Lett. 60, 2426 (1988).

    Article  ADS  Google Scholar 

  5. P. Voisin, J. Bleuse, C. Bouche, et al., Phys. Rev. Lett. 61, 1639 (1988).

    Article  ADS  Google Scholar 

  6. J. Feldman, K. Leo, D. A. B. Miller, et al., Phys. Rev. B 46, 7252 (1992).

    Article  ADS  Google Scholar 

  7. K. Leo, P. Haring Bolivar, F. Bruggeman, et al., Solid State Commun. 84, 943 (1992).

    Article  Google Scholar 

  8. A. Sibille, J. F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 64, 52 (1990).

    Article  ADS  Google Scholar 

  9. F. Bettram, F. Capasso, D. L. Sivco, et al., Phys. Rev. Lett. 64, 3167 (1990).

    ADS  Google Scholar 

  10. J. Grenzer, A. A. Ignatov, E. Schomburg, et al., Ann. Phys. (Leipzig) 4, 1 (1995).

    Google Scholar 

  11. A. Rabinovitch and J. Zak, Phys. Rev. B 4, 2358 (1971).

    ADS  Google Scholar 

  12. L. Kleinman, Phys. Rev. B 41, 3857 (1990).

    Article  ADS  Google Scholar 

  13. N. L. Chupricov, J. Phys.: Condens. Matter 11, 1069 (1999).

    ADS  Google Scholar 

  14. Yu. A. Vodakov, A. O. Konstantinov, D. P. Litvin, and V. I. Sankin, Pis’ma Zh. Tekh. Fiz. 7, 705 (1981) [Sov. Tech. Phys. Lett. 7, 301 (1981)].

    Google Scholar 

  15. A. P. Dmitriev, A. O. Konstantinov, D. P. Litvin, and V. I. Sankin, Fiz. Tekh. Poluprovodn. (Leningrad) 17, 1093 (1983) [Sov. Phys. Semicond. 17, 686 (1983)].

    Google Scholar 

  16. V. I. Sankin, Yu. A. Vodakov, and D. P. Litvin, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 2146 (1984) [Sov. Phys. Semicond. 18, 1339 (1984)].

    Google Scholar 

  17. Yu. A. Vodakov, D. P. Litvin, V. I. Sankin, et al., Fiz. Tekh. Poluprovodn. (Leningrad) 19, 814 (1985) [Sov. Phys. Semicond. 19, 502 (1985)].

    Google Scholar 

  18. V. I. Sankin and A. V. Naumov, Superlattices Microstruct. 10, 353 (1991).

    ADS  Google Scholar 

  19. V. I. Sankin and I. A. Stolichnov, Pis’ma Zh. Éksp. Teor. Fiz. 59, 703 (1994) [JETP Lett. 59, 744 (1994)].

    Google Scholar 

  20. V. I. Sankin and I. A. Stolichnov, Pis’ma Zh. Éksp. Teor. Fiz. 64, 105 (1996) [JETP Lett. 64, 114 (1996)].

    Google Scholar 

  21. V. I. Sankin and I. A. Stolichnov, Superlattices Microstruct. 23, 999 (1998).

    ADS  Google Scholar 

  22. A. F. Volkov and Sh. M. Kogan, Usp. Fiz. Nauk 96, 633 (1968) [Sov. Phys. Usp. 11, 881 (1970)].

    Google Scholar 

  23. B. L. Gel’mont and M. S. Shur, Fiz. Tekh. Poluprovodn. (Leningrad) 7, 453 (1973) [Sov. Phys. Semicond. 7, 326 (1973)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 77, No. 1, 2003, pp. 38–42.

Original Russian Text Copyright © 2003 by Sankin, Shkrebii, Savkina, Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankin, V.I., Shkrebii, P.P., Savkina, N.S. et al. New Wannier-Stark localization effects in natural 6H-SiC superlattice. Jetp Lett. 77, 34–38 (2003). https://doi.org/10.1134/1.1561978

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1561978

PACS numbers

Navigation