Skip to main content
Log in

The conceptual development of stationary plasma thrusters

  • The 30th Anniversary of SPT Operation in Space
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The history of the development of the concept of the stationary plasma thruster is described. The data obtained indicate the possibility of creating extended (over a distance substantially longer than the Debye radius) electric fields in a fully ionized plasma with a relatively high electron temperature (T e>10 eV) and a conductivity close to the classical one. Based on these results, a number of fundamentally new plasma-dynamic systems were proposed; in particular, the principles of plasma optics were formulated and verified experimentally. In the course of these investigations, new physical processes, such as the formation of the distribution function of the electrons in their collisions with the wall and the effect of the near-wall conductivity, were discovered. The structure of the Debye layer for the case in which the coefficient of the secondary electron emission of a dielectric wall is larger than unity was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Artsimovich, I. M. Andronov, A. I. Morozov, et al., Kosm. Issled. 12(3), 451 (1974).

    Google Scholar 

  2. A. I. Morozov, Zh. Éksp. Teor. Fiz. 32, 305 (1957) [Sov. Phys. JETP 5, 215 (1957)].

    Google Scholar 

  3. A. I. Morozov, Encyclopedia of Low-Temperature Plasma (Nauka, Moscow, 2000), p. 482.

    Google Scholar 

  4. K. P. Kozubskii, V. N. Murashko, Yu. P. Rylov, et al., Fiz. Plazmy 29, 251 (2003) [Plasma Phys. Rep. 29, 251 (2003)].

    Google Scholar 

  5. V. N. Oraevsky, Yu. Ya. Ruzhin, V. S. Dokukin, and A. I. Morozov, Fiz. Plazmy 29, 293 (2003) [Plasma Phys. Rep. 29, 267 (2003)].

    Google Scholar 

  6. A. I. Morozov and V. V. Savelyev, Rev. Plasma Phys. 21, 203 (2000).

    Google Scholar 

  7. A. I. Morozov, Encyclopedia of Low-Temperature Plasma (Nauka, Moscow, 2000), p. 444.

    Google Scholar 

  8. E. E. Yushmanov, Plasma Physics and the Problem of Controlled Nuclear Fusion, Ed. by M. A. Leontovich (Akad. Nauk SSSR, Moscow, 1958), Vol. 4, p. 235.

    Google Scholar 

  9. S. D. Grishin, V. S. Erofeev, and A. V. Zharinov, Plasma Accelarators, Ed. by L. A. Artsimovich (Mashinostroenie, Moscow, 1975), p. 54.

    Google Scholar 

  10. A. I. Morozov, A. I. Bugrova, A. V. Desyatskov, et al., Fiz. Plazmy 23, 635 (1997) [Plasma Phys. Rep. 23, 587 (1997)].

    Google Scholar 

  11. A. I. Bugrova, A. S. Lipatov, and A. I. Morozov, Fiz. Plazmy 21, 650 (1995) [Plasma Phys. Rep. 21, 614 (1995)].

    Google Scholar 

  12. A. I. Morozov, Yu. V. Esipchuk, A. M. Kapulkin, et al., Zh. Tekh. Fiz. 42, 612 (1972) [Sov. Phys. Tech. Phys. 17, 482 (1972)].

    Google Scholar 

  13. B. A. Arkhipov, R. Yu. Gnizdor, N. A. Maslennikov, et al., Fiz. Plazmy 18, 1241 (1992) [Sov. J. Plasma Phys. 18, 641 (1992)].

    Google Scholar 

  14. A. I. Bugrova, A. V. Desyatskov, and A. I. Morozov, Fiz. Plazmy 18, 963 (1992) [Sov. J. Plasma Phys. 18, 501 (1992)].

    Google Scholar 

  15. A. I. Morozov, Prikl. Mekh. Tekh. Fiz. 3, 19 (1968).

    Google Scholar 

  16. A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Fiz. Plazmy 18, 963 (1992) [Sov. J. Plasma Phys. 18, 501 (1992)].

    Google Scholar 

  17. K. P. Kirdyashev and A. I. Morozov, Fiz. Plazmy 25, 326 (1999) [Plasma Phys. Rep. 25, 293 (1999)].

    Google Scholar 

  18. A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 28, 1103 (2002) [Plasma Phys. Rep. 28, 1017 (2002)].

    Google Scholar 

  19. A. I. Morozov and I. V. Melikov, Zh. Tekh. Fiz. 44, 544 (1974) [Sov. Phys. Tech. Phys. 19, 340 (1974)].

    Google Scholar 

  20. A. I. Bugrova, N. A. Maslennikov, and A. I. Morozov, Zh. Tekh. Fiz. 61, 45 (1991).

    Google Scholar 

  21. A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 21, 970 (1995) [Plasma Phys. Rep. 21, 917 (1995)].

    Google Scholar 

  22. I. P. Zubkov, A. Ya. Kislov, and A. I. Morozov, Zh. Tekh. Fiz. 40, 2301 (1970) [Sov. Phys. Tech. Phys. 15, 1796 (1971)].

    Google Scholar 

  23. S. K. Demitrov and V. A. Obukhov, Ion Injectors and Plasma Accelerators, Ed. by A. I. Morozov and N. N. Semashko (Énergoatomizdat, Moscow, 1990), p. 193.

    Google Scholar 

  24. V. V. Zhukov, A. I. Morozov, and G. Ya. Shchepkin, Pis’ma Zh. Éksp. Teor. Fiz. 9, 24 (1969) [JETP Lett. 9, 14 (1969)].

    Google Scholar 

  25. A. I. Morozov and V. V. Savel’ev, Usp. Fiz. Nauk 168, 1153 (1998) [Phys. Usp. 41, 1049 (1998)].

    Google Scholar 

  26. V. V. Zhukov, A. I. Morozov, and G. Ya. Shchepkin, Pis’ma Zh. Éksp. Teor. Fiz. 9, 24 (1969) [JETP Lett. 9, 14 (1969)].

    Google Scholar 

  27. A. I. Morozov, Dokl. Akad. Nauk SSSR 163, 1363 (1965) [Sov. Phys. Dokl. 10, 775 (1965)].

    Google Scholar 

  28. A. I. Morozov and S. V. Lebedev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1974; Consultants Bureau, New York, 1980), Vol. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 29, No. 3, 2003, pp. 261–276.

Original Russian Text Copyright © 2003 by Morozov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.I. The conceptual development of stationary plasma thrusters. Plasma Phys. Rep. 29, 235–250 (2003). https://doi.org/10.1134/1.1561119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1561119

Keywords

Navigation