Advertisement

Plasma Physics Reports

, Volume 29, Issue 3, pp 235–250 | Cite as

The conceptual development of stationary plasma thrusters

  • A. I. Morozov
The 30th Anniversary of SPT Operation in Space

Abstract

The history of the development of the concept of the stationary plasma thruster is described. The data obtained indicate the possibility of creating extended (over a distance substantially longer than the Debye radius) electric fields in a fully ionized plasma with a relatively high electron temperature (Te>10 eV) and a conductivity close to the classical one. Based on these results, a number of fundamentally new plasma-dynamic systems were proposed; in particular, the principles of plasma optics were formulated and verified experimentally. In the course of these investigations, new physical processes, such as the formation of the distribution function of the electrons in their collisions with the wall and the effect of the near-wall conductivity, were discovered. The structure of the Debye layer for the case in which the coefficient of the secondary electron emission of a dielectric wall is larger than unity was investigated.

Keywords

Distribution Function Physical Process Electron Temperature Secondary Electron High Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. A. Artsimovich, I. M. Andronov, A. I. Morozov, et al., Kosm. Issled. 12(3), 451 (1974).Google Scholar
  2. 2.
    A. I. Morozov, Zh. Éksp. Teor. Fiz. 32, 305 (1957) [Sov. Phys. JETP 5, 215 (1957)].Google Scholar
  3. 3.
    A. I. Morozov, Encyclopedia of Low-Temperature Plasma (Nauka, Moscow, 2000), p. 482.Google Scholar
  4. 4.
    K. P. Kozubskii, V. N. Murashko, Yu. P. Rylov, et al., Fiz. Plazmy 29, 251 (2003) [Plasma Phys. Rep. 29, 251 (2003)].Google Scholar
  5. 5.
    V. N. Oraevsky, Yu. Ya. Ruzhin, V. S. Dokukin, and A. I. Morozov, Fiz. Plazmy 29, 293 (2003) [Plasma Phys. Rep. 29, 267 (2003)].Google Scholar
  6. 6.
    A. I. Morozov and V. V. Savelyev, Rev. Plasma Phys. 21, 203 (2000).Google Scholar
  7. 7.
    A. I. Morozov, Encyclopedia of Low-Temperature Plasma (Nauka, Moscow, 2000), p. 444.Google Scholar
  8. 8.
    E. E. Yushmanov, Plasma Physics and the Problem of Controlled Nuclear Fusion, Ed. by M. A. Leontovich (Akad. Nauk SSSR, Moscow, 1958), Vol. 4, p. 235.Google Scholar
  9. 9.
    S. D. Grishin, V. S. Erofeev, and A. V. Zharinov, Plasma Accelarators, Ed. by L. A. Artsimovich (Mashinostroenie, Moscow, 1975), p. 54.Google Scholar
  10. 10.
    A. I. Morozov, A. I. Bugrova, A. V. Desyatskov, et al., Fiz. Plazmy 23, 635 (1997) [Plasma Phys. Rep. 23, 587 (1997)].Google Scholar
  11. 11.
    A. I. Bugrova, A. S. Lipatov, and A. I. Morozov, Fiz. Plazmy 21, 650 (1995) [Plasma Phys. Rep. 21, 614 (1995)].Google Scholar
  12. 12.
    A. I. Morozov, Yu. V. Esipchuk, A. M. Kapulkin, et al., Zh. Tekh. Fiz. 42, 612 (1972) [Sov. Phys. Tech. Phys. 17, 482 (1972)].Google Scholar
  13. 13.
    B. A. Arkhipov, R. Yu. Gnizdor, N. A. Maslennikov, et al., Fiz. Plazmy 18, 1241 (1992) [Sov. J. Plasma Phys. 18, 641 (1992)].Google Scholar
  14. 14.
    A. I. Bugrova, A. V. Desyatskov, and A. I. Morozov, Fiz. Plazmy 18, 963 (1992) [Sov. J. Plasma Phys. 18, 501 (1992)].Google Scholar
  15. 15.
    A. I. Morozov, Prikl. Mekh. Tekh. Fiz. 3, 19 (1968).Google Scholar
  16. 16.
    A. I. Bugrova, A. I. Morozov, and V. K. Kharchevnikov, Fiz. Plazmy 18, 963 (1992) [Sov. J. Plasma Phys. 18, 501 (1992)].Google Scholar
  17. 17.
    K. P. Kirdyashev and A. I. Morozov, Fiz. Plazmy 25, 326 (1999) [Plasma Phys. Rep. 25, 293 (1999)].Google Scholar
  18. 18.
    A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 28, 1103 (2002) [Plasma Phys. Rep. 28, 1017 (2002)].Google Scholar
  19. 19.
    A. I. Morozov and I. V. Melikov, Zh. Tekh. Fiz. 44, 544 (1974) [Sov. Phys. Tech. Phys. 19, 340 (1974)].Google Scholar
  20. 20.
    A. I. Bugrova, N. A. Maslennikov, and A. I. Morozov, Zh. Tekh. Fiz. 61, 45 (1991).Google Scholar
  21. 21.
    A. I. Morozov and V. V. Savel’ev, Fiz. Plazmy 21, 970 (1995) [Plasma Phys. Rep. 21, 917 (1995)].Google Scholar
  22. 22.
    I. P. Zubkov, A. Ya. Kislov, and A. I. Morozov, Zh. Tekh. Fiz. 40, 2301 (1970) [Sov. Phys. Tech. Phys. 15, 1796 (1971)].Google Scholar
  23. 23.
    S. K. Demitrov and V. A. Obukhov, Ion Injectors and Plasma Accelerators, Ed. by A. I. Morozov and N. N. Semashko (Énergoatomizdat, Moscow, 1990), p. 193.Google Scholar
  24. 24.
    V. V. Zhukov, A. I. Morozov, and G. Ya. Shchepkin, Pis’ma Zh. Éksp. Teor. Fiz. 9, 24 (1969) [JETP Lett. 9, 14 (1969)].Google Scholar
  25. 25.
    A. I. Morozov and V. V. Savel’ev, Usp. Fiz. Nauk 168, 1153 (1998) [Phys. Usp. 41, 1049 (1998)].Google Scholar
  26. 26.
    V. V. Zhukov, A. I. Morozov, and G. Ya. Shchepkin, Pis’ma Zh. Éksp. Teor. Fiz. 9, 24 (1969) [JETP Lett. 9, 14 (1969)].Google Scholar
  27. 27.
    A. I. Morozov, Dokl. Akad. Nauk SSSR 163, 1363 (1965) [Sov. Phys. Dokl. 10, 775 (1965)].Google Scholar
  28. 28.
    A. I. Morozov and S. V. Lebedev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Atomizdat, Moscow, 1974; Consultants Bureau, New York, 1980), Vol. 8.Google Scholar

Copyright information

© MAIK "Nauka/Interperiodica" 2003

Authors and Affiliations

  • A. I. Morozov
    • 1
  1. 1.Nuclear Fusion InstituteRussian Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations