Skip to main content
Log in

Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied to seafloor characterization

  • Published:
Acoustical Physics Aims and scope Submit manuscript

Abstract

This paper investigates the influence of various backscattered echo parameters collected at an echosounder frequency of 200 kHz on the performance of the neuro-fuzzy and fuzzy decision tree classifiers of a seabed. In particular, the wavelet coefficients of the bottom echo were investigated along with other echo parameters like energy, amplitude, slope of the falling part of the echo, etc. The data were processed in an Adaptive Neuro Fuzzy Inference System (ANFIS), which was implemented in two multistage structures, viz.; Incremental Fuzzy Neural Network (IFNN) and Aggregated Fuzzy Neural Network (AFNN). The number of input parameters for the networks was reduced by using the Principal Component Analysis (PCA). A fuzzy decision tree algorithm was developed and used directly (without PCA data reduction) in the classification procedure utilizing the same data. The performances of both approaches were analyzed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Hughes Clarke, B. W. Danforth, and P. Valentine, in SACLANTCEN Conference Proceedings Series CP-45, High Frequency Acoustics in Shallow Water (La Spezia, 1997), p. 243.

  2. X. Lurton, J. M. Augustin, S. Dugelay, et al., in SACLANTCEN Conference Proceedings Series CP-45, High Frequency Acoustics in Shallow Water (La Spezia, 1997), p. 313.

  3. R. C. Chivers, N. Emerson, and D. R. Burns, Hydrograph. J., No. 56, 9 (1989).

  4. E. Pouliquen and X. Lurton, in Proceedings of the European Conference on Underwater Acoustics (Elsevier, London and New York, 1992), p. 535.

    Google Scholar 

  5. L. R. Le Blanc, L. Mayer, M. Rufino, et al., J. Acoust. Soc. Am. 91, 107 (1992).

    ADS  Google Scholar 

  6. P. Andrieux, P. Delachartre, D. Vray, and G. Giménez, J. Acoust. Soc. Am. 98, 552 (1995).

    Article  ADS  Google Scholar 

  7. M. Gensane and H. Tarayre, Acoust. Lett. 16(5), 110 (1992).

    Google Scholar 

  8. C. S. Maroni and A. Quinquis, in SACLANTCEN Conference Proceedings Series CP-45, High Frequency Acoustics in Shallow Water (La Spezia, 1997), p. 347.

  9. R. A. Calvo, M. G. Partridge, and M. A. Jabri, in Proceedings of the 9th Australian Conference on Neural Networks (Brisbane, QLD, 1998).

    Google Scholar 

  10. M. Moszynski, A. Stepnowski, and Z. Lubniewski, in Proceedings of the 2nd EAA International Symposium on Hydroacoustics (Gdańsk, 1999), p. 85.

  11. A. Stepnowski, J. Maciolowska, and T. V. Dung, Arch. Acoust. 24(3), 365 (1999).

    Google Scholar 

  12. T. V. Dung and A. Stepnowski, Acta Acust. (China) 86, 830 (2000).

    Google Scholar 

  13. C. K. Chui, Wavelet: A Tutorial in Theory Applications (Academic, San Diego, 1992).

    Google Scholar 

  14. M. Moszynski, in Proceedings of the 4th European Conference on Underwater Acoustics (Rome, 1998), p. 205.

  15. L. A. Zadeh, Inf. Control., No. 8, 338 (1965).

  16. J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy Soft Computing: A Computational Approach to Learning Machine Intelligence (Prentice Hall, Upper Saddle River, NJ, 1997).

    Google Scholar 

  17. J.-S. R. Jang, IEEE Trans. Syst. Man Cybern. 23(3), 665 (1993).

    Article  MathSciNet  Google Scholar 

  18. J. S. Duan and F. L. Chung, in Proceedings of the IEEE World Congress on Computational Intelligence (Fuzzy IEEE, Anchorage, Alaska, 1998), p. 1253.

    Google Scholar 

  19. R. J. Quinlan, Mach. Learn. 1, 81 (1986).

    Google Scholar 

  20. L. Breiman, J. H. Friedman, R. A. Olsen, and C. J. Stone, Classification and Regression Trees (Wadsford, Belmont, Cal., 1984).

    Google Scholar 

  21. C. Z. Janikow, IEEE Trans. Syst. Man Cybern. 28(1), 1 (1998).

    Google Scholar 

  22. L. M. Lyamshev and A. Stepnowski, Fractal Laws of Sound Backscattering by Sea Surface and Bottom Hydroacoustics (Gdynia, 2001), Vol. 4.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to the memory of the outstanding Russian acoustician and my dear friend and colleague Professor Leonid M. Lyamshev.

__________

Translated from Akusticheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 49, No. 2, 2003, pp. 233–244.

Original English Text Copyright © 2003 by Stepnowski, Moszyn ski, Tran Van Dung.

This paper was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepnowski, A., Moszyński, M. & Van Dung, T. Adaptive neuro-fuzzy and fuzzy decision tree classifiers as applied to seafloor characterization. Acoust. Phys. 49, 193–202 (2003). https://doi.org/10.1134/1.1560382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1560382

Keywords

Navigation