Skip to main content
Log in

Variety of LaSrMnO structures induced by growth conditions and laser irradiation

  • Surfaces, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Crystallographic phase transitions in perovskite-like LaSrMnO metallic oxides are studied. The transitions are induced when internal stresses generated during film synthesis (at temperatures between 450 and 730°C) vary (decrease or increase) upon subsequent irradiation by a KrF laser emitting in the UV range. As the synthesis temperature T s grows, the rhombohedral-to-orthorhombic phase transition occurs at 650–670°C. The resistivity is shown to be either temperature-independent, ρ(T)=const, at T<T crit, or varies and reaches a maximum, ρ(T)=ρmax, at the Curie temperature T c. Optical transmission spectra taken at photon energies ℏω=0.5–2.5 eV exhibit both a high (0.8–0.9) and low (0.1–0.3) transmission coefficient t, depending on the synthesis temperature. As follows from X-ray diffraction data, the laser irradiation causes a phase transition only in LaSrMnO films grown at T s<650°C. Phases of different size scales appear: the long-range-order orthorhombic matrix and mesoscopic-range-order rhombohedral clusters are observed in the films grown at T s=450–550°C and the rhombohedral matrix with orthorhombic clusters, in the films grown at T s=550–650°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  2. O. Yu. Gorbenko, R. V. Demin, A. R. Kaul’, et al., Fiz. Tverd. Tela (St. Petersburg) 40, 290 (1998) [Phys. Solid State 40, 263 (1998)].

    Google Scholar 

  3. Z. L. Wang, J. S. Yin, Y. D. Jang, and Jiming Zhang, Appl. Phys. Lett. 70, 3362 (1997).

    ADS  Google Scholar 

  4. V. S. Gaviko, V. E. Arkhipov, A. V. Korolev, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 1064 (1999) [Phys. Solid State 41, 969 (1999)].

    Google Scholar 

  5. V. G. Prokhorov, G. G. Kaminskii, V. S. Flis, and Li Yang Pak, Fiz. Nizk. Temp. 25, 1060 (1999) [Low Temp. Phys. 25, 792 (1999)].

    Google Scholar 

  6. I. O. Troyanchuk, O. S. Mantytskaya, S. N. Postushonok, et al., Kristallografiya 41, 839 (1996) [Crystallogr. Rep. 41, 797 (1996)].

    Google Scholar 

  7. V. N. Strekalovskii, Yu. M. Polezhaev, and S. F. Pal’guev, Oxides with Impurity Disordering (Nauka, Moscow, 1987).

    Google Scholar 

  8. V. D. Okunev, Z. A. Samoilenko, V. M. Svistunov, et al., J. Appl. Phys. 85, 7282 (1999).

    Article  ADS  Google Scholar 

  9. M. A. Krivoglaz, in Electronic Structure and Electronic Properties of Metals and Alloys (Naukova Dumka, Kiev, 1998), pp. 3–39.

    Google Scholar 

  10. V. D. Okunev and Z. A. Samoilenko, Pis’ma Zh. Éksp. Teor. Fiz. 53(1), 42 (1991) [JETP Lett. 53, 44 (1991)].

    Google Scholar 

  11. K. Meyer, Physikalisch-Chemische Kristallographie (VEB, Leipzig, 1968; Metallurgiya, Moscow, 1972).

    Google Scholar 

  12. B. I. Shklovskii and A. L. Éfros, Electronic Properties of Doped Semiconductors (Nauka, Moscow, 1979; Springer, New York, 1984).

    Google Scholar 

  13. V. D. Okunev, Z. A. Samoilenko, A. Abal’oshev, et al., Phys. Rev. B 62, 696 (2000).

    Article  ADS  Google Scholar 

  14. V. D. Okunev, N. N. Pafomov, V. A. Isaev, et al., Fiz. Tverd. Tela (St. Petersburg) 44, 150 (2002) [Phys. Solid State 44, 157 (2002)].

    Google Scholar 

  15. S. G. Kaplan, M. Quijada, H. D. Drew, et al., Phys. Rev. Lett. 77, 2081 (1996).

    Article  ADS  Google Scholar 

  16. J. M. D. Coey, M. Viret, L. Ranno, and K. Ounagjela, Phys. Rev. Lett. 75, 3910 (1995).

    Article  ADS  Google Scholar 

  17. M. Ziese and C. Srinitiwarawong, Phys. Rev. B 58, 11519 (1998).

    Google Scholar 

  18. I. O. Troyanchuk, L. S. Lobanovskii, D. D. Khalyavin, et al., Zh. Éksp. Teor. Fiz. 116, 604 (1999) [JETP 89, 321 (1999)].

    Google Scholar 

  19. V. D. Okunev, Z. A. Samoilenko, V. A. Isaev, et al., Pis’ma Zh. Tekh. Fiz. 28(2), 12 (2002) [Tech. Phys. Lett. 28, 44 (2002)].

    Google Scholar 

  20. A. Biswas, M. Rajeswari, R. C. Srivastava, et al., Phys. Rev. B 63, 184424 (2001).

    Google Scholar 

  21. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  22. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1974; Nauka, Moscow, 1979).

    Google Scholar 

  23. A. E. Kar’kin, D. A. Shulyatev, A. A. Arsenov, et al., Zh. Éksp. Teor. Fiz. 116, 671 (1999) [JETP 89, 358 (1999)].

    Google Scholar 

  24. N. G. Bebenin, R. I. Zainullina, V. V. Mashkautsan, et al., Zh. Éksp. Teor. Fiz. 117, 1181 (2000) [JETP 90, 1027 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 73, No. 2, 2003, pp. 118–124.

Original Russian Text Copyright © 2003 by Samo\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\)lenko, Okunev, Pushenko, D’yachenko, Cherenkov, Gierlowski, Lewandowski, Abal’oshev, Klimov, Szewczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilenko, Z.A., Okunev, V.D., Pushenko, E.I. et al. Variety of LaSrMnO structures induced by growth conditions and laser irradiation. Tech. Phys. 48, 250–256 (2003). https://doi.org/10.1134/1.1553569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1553569

Keywords

Navigation