Skip to main content
Log in

Reconstruction of the 2D hole gas spectrum for selectively doped p-Ge/Ge1−x Six heterostructures

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetic field (0≤B≤32 T) and temperature (0.1≤T≤15 K) dependences of longitudinal and Hall resistivities have been investigated for p-Ge0.93Si0.07/Ge multilayers with different Ge layer widths 12≤d w ≤20 nm and hole densities p s =(1–5)×1015 m−2. An extremely high sensitivity of the experimental data (the structure of magnetoresistance traces, relative values of the inter-Landau-level gaps deduced from the activation magnetotransport, etc.) to the quantum well profile is revealed in the cases where the Fermi level reaches the second confinement subband. An unusually high density of localized states between the Landau levels is deduced from the data. Two models for the long-range random impurity potential (the model with randomly distributed charged centers located outside the conducting layer and the model of the system with a spacer) are used to evaluate the impurity potential fluctuation characteristics: the random potential amplitude, the nonlinear screening length in the vicinity of integer filling factors v=1 and v=2, and the background density of states (DOS). The described models are suitable for explanation of the observed DOS values, while the short-range impurity potential models fail. For half-integer filling factors, a linear temperature dependence of the effective quantum Hall effect plateau-plateau (PP) transition widths v 0(T) is observed, contrary to the expected scaling behavior of the systems with short-range disorder. The finite T→0 width of the PP transitions may be due to an effective low-temperature screening of a smooth random potential due to the Coulomb repulsion of electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Schaffer, Semicond. Sci. Technol. 12, 1515 (1997).

    ADS  Google Scholar 

  2. C. M. Engelhard, D. Toebben, M. Aschauer, et al., Solid-State Electron. 37, 949 (1994).

    Google Scholar 

  3. R. Winkler, M. Merkler, T. Darnhofer, and U. Rössler, Phys. Rev. B 53, 10858 (1996).

    Google Scholar 

  4. Yu. G. Arapov, N. A. Gorodilov, V. N. Neverov, et al., Pis’ma Zh. Éksp. Teor. Fiz. 59, 247 (1994) [JETP Lett. 59, 268 (1994)].

    Google Scholar 

  5. Yu. G. Arapov, V. N. Neverov, G. I. Harus, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 721 (1998) [Semiconductors 32, 649 (1998)].

    Google Scholar 

  6. M. G. Gavrilov and T. V. Kukushkin, Pis’ma Zh. Éksp. Teor. Fiz. 43, 79 (1986) [JETP Lett. 43, 103 (1986)].

    Google Scholar 

  7. H. P. Wei, A. M. Chang, D. C. Tsui, and M. Rozeghi, Phys. Rev. B 32, 7016 (1985).

    ADS  Google Scholar 

  8. D. Weiss, E. Stahl, G. Weiman, et al., Surf. Sci. 170, 285 (1986).

    Article  Google Scholar 

  9. P. Svoboda, G. Nachtwei, C. Breitlow, et al., cond-mat/9612053.

  10. R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).

    Article  ADS  Google Scholar 

  11. B. I. Halperin, Phys. Rev. B 25, 2185 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  12. Yu. G. Arapov, G. I. Harus, V. N. Neverov, et al., Nanotechnology 11, 351 (2000); cond-mat/0103343.

    Article  ADS  Google Scholar 

  13. B. I. Shklovskii and A. L. Éfros, Pis’ma Zh. Éksp. Teor. Fiz. 44, 520 (1986) [JETP Lett. 44, 669 (1986)].

    Google Scholar 

  14. A. L. Efros, Solid State Commun. 70, 253 (1989).

    Article  Google Scholar 

  15. A. L. Efros, F. G. Pikus, and V. G. Burnett, Phys. Rev. B 47, 2233 (1993).

    ADS  Google Scholar 

  16. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995).

    Article  ADS  Google Scholar 

  17. I. V. Kukushkin, S. V. Meshkov, and V. B. Timofeev, Usp. Fiz. Nauk 155, 219 (1988) [Sov. Phys. Usp. 31, 511 (1988)].

    Google Scholar 

  18. D. Liu and S. Das Sarma, Phys. Rev. B 49, 2677 (1994).

    ADS  Google Scholar 

  19. H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61, 1294 (1988).

    ADS  Google Scholar 

  20. D. Shahar, D. C. Tsui, M. Shayegan, et al., cond-mat/ 9611011.

  21. P. T. Coleridge, cond-mat/9902103.

  22. R. T. F. van Schaijk, A. de Visser, S. Olsthoorn, et al., Phys. Rev. Lett. 84, 1567 (2000); cond-mat/9812035.

    ADS  Google Scholar 

  23. S. Koch, R. J. Haug, K. von Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).

    Article  ADS  Google Scholar 

  24. M. D’Iorio, V. M. Pudalov, and S. M. Semenchinsky, in High Magnetic Fields in Semiconductor Physics, Ed. by G. Landwehr (Springer-Verlag, Berlin, 1992), p. 56.

    Google Scholar 

  25. D. Shahar, M. Hilke, C. C. Li, et al., Solid State Commun. 107, 19 (1998); cond-mat/9706045.

    Article  Google Scholar 

  26. D. H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. Lett. 70, 4130 (1993).

    ADS  Google Scholar 

  27. P. T. Coleridge and P. Zawadzki, Solid State Commun. 112, 241 (1999).

    Article  Google Scholar 

  28. A. M. M. Pruisken, B. Šcorić, and M. A. Baranov, Phys. Rev. B 60, 16838 (1999); cond-mat/9807241.

    Google Scholar 

  29. S. Luryi, in High Magnetic Fields in Semiconductor Physics, Ed. by G. Landwehr (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  30. A. L. Efros, Phys. Rev. B 45, 11354 (1992).

    Google Scholar 

  31. N. R. Cooper and J. T. Chalker, Phys. Rev. B 48, 4530 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 1, 2003, pp. 137–148.

Original English Text Copyright © 2003 by Arapov, Harus, Neverov, Shelushinina, Yakunin, Kuznetsov.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arapov, Y.G., Harus, G.I., Neverov, V.N. et al. Reconstruction of the 2D hole gas spectrum for selectively doped p-Ge/Ge1−x Six heterostructures. J. Exp. Theor. Phys. 96, 118–128 (2003). https://doi.org/10.1134/1.1545391

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1545391

Keywords

Navigation