Skip to main content
Log in

Magnetic properties of anion-deficient La1−x BaxMnO3−x/2 (0≤x≤0.30) manganites

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An experimental investigation is performed of the crystal structure and magnetic and electrical properties of anion-deficient compositions of La 3+1−x Ba 2+x Mn3+O 2/2−3−x (0≤x≤0.30) which do not contain manganese ions of different vacancies. It is found that all reduced samples are single-phase perovskites with O-orthorhombic (x=0, 0.05), rhombohedral (x= 0.10, 0.15, 0.20, 0.25), and cubic (x=0.30) symmetry of the unit cell. It is observed that systems of the compounds being treated experience a transition from a weakly ferromagnetic (x=0) to a nonuniform ferromagnetic (0≤x≤0.10) state. An increase in the degree of nonstoichiometry with respect to oxygen leads to the emergence of the antiferromagnetic orbitally disordered phase. For compounds with x>0.20, clearly defined properties are observed that are characteristic of cluster spin glass with the freezing temperature of magnetic moments T F ∼45 K. The maximal amount of the ferromagnetic component is registered for x=0.15. All of the reduced samples are semiconductors. As the substitution level increases, the electrical resistivity (at room temperature) first decreases in magnitude (0≤x≤0.15) and then increases (x>0.15). The magnetoresistance of all reduced samples increases gradually upon transition to a magnetically ordered state and reaches its maximal value at the liquid nitrogen temperature. A hypothetical magnetic phase diagram is constructed for the system of anion-deficient compositions of La 3+1−x Ba 2+x Mn3+O 2/2−3−x (0≤x≤0.30) being treated. The investigation results contribute to understanding the nature of 180-degree indirect superexchange interactions between ions of trivalent manganese. It is assumed that the Mn3+-O-Mn3+ superexchange interactions are negative in the orbitally disordered phase in the case of pentahedral coordination of Mn3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Jonker and J. H. van Santen, Physica (Utrecht) 16, 337 (1950).

    Article  Google Scholar 

  2. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  3. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  4. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  5. D. Hawe, Sens. Actuators A 81, 268 (2000).

    Google Scholar 

  6. Y. Xu, U. Memmert, and U. Hartmann, Sens. Actuators A 91, 26 (2001).

    Google Scholar 

  7. J. Volger, Physica (Amsterdam) 20, 46 (1954).

    Article  Google Scholar 

  8. C. Searle and S. T. Wang, Can. J. Phys. 47, 2703 (1969).

    ADS  Google Scholar 

  9. G. Matsumoto, J. Phys. Soc. Jpn. 29, 606 (1970).

    Google Scholar 

  10. I. O. Troyanchuk, Zh. Éksp. Teor. Fiz. 102, 132 (1992) [Sov. Phys. JETP 75, 132 (1992)].

    Google Scholar 

  11. I. O. Troyanchuk, D. D. Khalyavin, S. V. Trukhanov, et al., J. Phys.: Condens. Matter 11, 8707 (1999).

    ADS  Google Scholar 

  12. K. Kikuchi, H. Chiba, M. Kikuchi, and Y. Syono, J. Solid State Chem. 146, 1 (1999).

    Article  ADS  Google Scholar 

  13. I. O. Troyanchuk, S. V. Trukhanov, D. D. Khalyavin, and H. Szymczak, J. Magn. Magn. Mater. 208, 217 (2000).

    Article  Google Scholar 

  14. B. Raveau, C. Martin, A. Maignan, and M. Hervieu, J. Phys.: Condens. Matter 14, 1297 (2002).

    Article  ADS  Google Scholar 

  15. S. L. Yuan, Y. Jiang, X. Y. Zeng, et al., Phys. Rev. B 62, 11347 (2000).

  16. F. Millange, A. Maignan, V. Caignaert, et al., Z. Phys. B 101, 169 (1996).

    Article  Google Scholar 

  17. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  18. P.-G. De Gennes, Phys. Rev. 118, 141 (1960).

    ADS  Google Scholar 

  19. J. B. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  20. V. M. Loktev and Yu. G. Pogorelov, Fiz. Nizk. Temp. 26, 231 (2000) [Low Temp. Phys. 26, 171 (2000)].

    Google Scholar 

  21. R. D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  22. J. B. Goodenough, A. Wold, R. J. Arnott, and N. Menyuk, Phys. Rev. 124, 373 (1961).

    Article  ADS  Google Scholar 

  23. I. Dzialoshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Google Scholar 

  24. F. K. Lotgering, Philips Res. Rep. 25, 8 (1970).

    Google Scholar 

  25. C. Roy and R. C. Budhani, J. Appl. Phys. 85, 3124 (1999).

    Article  ADS  Google Scholar 

  26. R. C. Budhani, C. Roy, L. Lewis, et al., J. Appl. Phys. 87, 2490 (2000).

    Article  ADS  Google Scholar 

  27. H. L. Ju, Y. S. Nam, J. E. Lee, and H. S. Shin, J. Magn. Magn. Mater. 219, 1 (2000).

    Article  ADS  Google Scholar 

  28. I. O. Troyanchuk, S. V. Trukhanov, D. D. Khalyavin, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 297 (2000) [Phys. Solid State 42, 305 (2000)].

    Google Scholar 

  29. G. Allodi, R. De Renzi, G. Guidi, et al., Phys. Rev. B 56, 6036 (1997).

    Article  ADS  Google Scholar 

  30. K. R. Poeppelmeier, M. E. Leonowicz, and J. M. Longo, J. Solid State Chem. 44, 89 (1982).

    Article  ADS  Google Scholar 

  31. K. R. Poeppelmeier, M. E. Leonowicz, J. C. Scanlon, et al., J. Solid State Chem. 45, 71 (1982).

    Article  ADS  Google Scholar 

  32. S. Nafis, J. A. Woollam, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 70, 6050 (1991).

    Article  ADS  Google Scholar 

  33. F. Conde, C. Gomez-Polo, and A. Hernando, J. Magn. Magn. Mater. 138, 123 (1994).

    ADS  Google Scholar 

  34. K. A. Thomas, P. S. I. P. N. de Silva, L. F. Cohen, et al., J. Appl. Phys. 84, 3939 (1998).

    ADS  Google Scholar 

  35. J. M. Gonzalez-Calbet, E. Herrero, N. Rangavittal, et al., J. Solid State Chem. 148, 158 (1999).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 123, No. 1, 2003, pp. 128–136.

Original Russian Text Copyright © 2003 by Trukhanov, Troyanchuk, Pushkarev, Szymczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trukhanov, S.V., Troyanchuk, I.O., Pushkarev, N.V. et al. Magnetic properties of anion-deficient La1−x BaxMnO3−x/2 (0≤x≤0.30) manganites. J. Exp. Theor. Phys. 96, 110–117 (2003). https://doi.org/10.1134/1.1545390

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1545390

Keywords

Navigation