Skip to main content
Log in

Condensates in quantum chromodynamics

  • 100th Anniversary of I.V. Kurchatov's Birth
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The paper presents a short review of our knowledge today on vacuum condensates in quantum chromodynamics (QCD). The condensates are defined as vacuum averages of the operators which arise due to nonperturbative effects. The important role of condensates in determining physical properties of hadrons and of their low-energy interactions in QCD is underlined. The special value of the quark condensate, connected to the existence of baryon masses, is mentioned. Vacuum condensates induced by external fields are discussed. QCD at low energy is checked on the basis of the data on hadronic τ decay. In theoretical analysis, the terms of perturbation theory (PT) up to α 3s are accounted for; in the operator product expansion (OPE), those up to dimension 8. The total probability of the decay τ → hadrons (with zero strangeness) and of the τ-decay structure functions are best described at α s (m 2τ )=0.330±0.025. It is shown that the Borel sum rules for τ-decay structure functions along the rays in the q 2-complex plane are in agreement with experiment, having an accuracy of ∼2% at the values of the Borel parameter |M 2|>0.8 GeV2. The magnitudes of dimension 6 and 8 condensates were found, and the limitations on gluon condensates were obtained. The sum rules for the charmed-quark vector-current polarization operator were analyzed in three loops (i.e., in order α 2s ). The value of the charmed-quark mass (in an \(\overline {MS} \) regularization scheme) was found to be \(\bar m_c (\bar m_c^2 ) = 1.275 \pm 0.015\) GeV, and the value of gluon condensate was estimated as 〈0|(α s/π)G 2|0〉=0.009±0.007 GeV4. The general conclusion is that the QCD described by PT + OPE is in good agreement with experiment at Q 2≳1 GeV2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Aleksandrov, Academician Anatolii Petrovich Aleksandrov: Direct Speech (Nauka, Moscow, 2001), p. 177.

    Google Scholar 

  2. D. Holloway, Stalin and the Bomb: the Soviet Union and Atomic Energy, 1939–1956 (Yale Univ. Press, New Haven, 1994; Sibirskii Khronograf, Novosibirsk, 1997), Chap. 15, Sect. 6.

    Google Scholar 

  3. B. L. Ioffe, Novyi Mir, No. 6, 161 (1999).

  4. A. A. Belavin, A. M. Polyakov, A. S. Schwarz, and Yu. S. Tyupkin, Phys. Lett. B 59B, 85 (1975).

    ADS  Google Scholar 

  5. M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Nucl. Phys. B 147, 385, 448 (1979).

    ADS  Google Scholar 

  6. V. A. Novikov, M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Nucl. Phys. B 249, 445 (1985).

    Article  ADS  Google Scholar 

  7. M. A. Shifman, Lecture at 1997 Yukawa International Seminar, Kyoto, 1997, Prog. Theor. Phys. Suppl. 131, 1 (1998).

  8. M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968).

    Article  ADS  Google Scholar 

  9. B. L. Ioffe, Usp. Fiz. Nauk 171, 1273 (2001).

    Article  Google Scholar 

  10. S. Weinberg, Trans. N. Y. Acad. Sci., Ser. 2 38, 185 (1977).

    Google Scholar 

  11. H. Leutwyler, J. Mosc. Phys. Soc. 6, 1 (1996).

    Google Scholar 

  12. B. L. Ioffe, Nucl. Phys. B 188, 317 (1981); Erratum: 192, 591 (1981).

    Article  ADS  Google Scholar 

  13. H. Leutwyler, in At the Frontier of Particle Physics: Handbook of QCD, Boris Ioffe Festschrift, Ed. by M. Shifman (World Sci., Singapore, 2001), Vol. 1, p. 271.

    Google Scholar 

  14. U. Meissner, in At the Frontier of Particle Physics: Handbook of QCD, Boris Ioffe Festschrift, Ed. by M. Shifman (World Sci., Singapore, 2001), Vol. 1, p. 417.

    Google Scholar 

  15. P. Gerber and H. Leutwyler, Nucl. Phys. B 321, 387 (1989).

    Article  ADS  Google Scholar 

  16. P. Chen et al., Phys. Rev. D 64, 014503 (2001).

  17. B. L. Ioffe, Lecture at St. Petersburg Winter School on Theoretical Physics, 1998, Surv. High Energy Phys. 14, 89 (1999).

  18. V. M. Belyaev and B. L. Ioffe, Zh. Éksp. Teor. Fiz. 83, 876 (1982) [Sov. Phys. JETP 56, 493 (1982)].

    Google Scholar 

  19. V. A. Novikov, M. A. Shifman, A. I. Vainstein, and V. I. Zakharov, Phys. Lett. B 86B, 347 (1979).

    ADS  Google Scholar 

  20. B. L. Ioffe and A. V. Smilga, Nucl. Phys. B 232, 109 (1984).

    Article  ADS  Google Scholar 

  21. V. M. Belyaev and Ya. I. Kogan, Yad. Fiz. 40, 1035 (1984) [Sov. J. Nucl. Phys. 40, 659 (1984)]; Ya. Ya. Balitskii, A. V. Kolesnichenko, and A. V. Yung, Yad. Fiz. 41, 282 (1985) [Sov. J. Nucl. Phys. 41, 178 (1985)].

    Google Scholar 

  22. V. M. Belyaev and Ya. I. Kogan, Pis'ma Zh. Éksp. Teor. Fiz. 37, 611 (1983) [JETP Lett. 37, 730 (1983)].

    Google Scholar 

  23. B. L. Ioffe and A. G. Oganesian, Phys. Rev. D 57, R6590 (1998).

    Article  ADS  Google Scholar 

  24. ALEPH Collab. (R. Barate et al.), Eur. Phys. J. C 4, 409 (1998).

    ADS  Google Scholar 

  25. OPAL Collab. (K. Ackerstaff et al.), Eur. Phys. J. C 7, 571 (1999); G. Abbiendi et al., Eur. Phys. J. C 13, 197 (2002).

    ADS  Google Scholar 

  26. CLEO Collab. (S. J. Richichi et al.), Phys. Rev. D 60, 112002 (1999).

  27. B. L. Ioffe and K. N. Zyablyuk, Nucl. Phys. A 687, 437 (2001).

    ADS  Google Scholar 

  28. B. V. Geshkenbein, B. L. Ioffe, and K. N. Zyablyuk, Phys. Rev. D 64, 093009 (2001).

    Google Scholar 

  29. A. Pich, in Proceedings of QCD94 Workshop, Monpellier, 1994, Nucl. Phys. B (Proc. Suppl.) 39, 396 (1995).

  30. W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 61, 1815 (1988).

    Article  ADS  Google Scholar 

  31. E. Braaten, Phys. Rev. Lett. 60, 1606 (1988); Phys. Rev. D 39, 1458 (1989).

    ADS  Google Scholar 

  32. S. Narison and A. Pich, Phys. Lett. B 211, 183 (1988).

    ADS  Google Scholar 

  33. F. Le Diberder and A. Pich, Phys. Lett. B 286, 147 (1992).

    ADS  Google Scholar 

  34. K. G. Chetyrkin, A. L. Kataev, and F. V. Tkachov, Phys. Lett. B 85B, 277 (1979); M. Dine and J. Sapirshtein, Phys. Rev. Lett. 43, 668 (1979); W. Celmaster and R. Gonsalves, Phys. Rev. Lett. 44, 560 (1980).

    ADS  Google Scholar 

  35. L. R. Surgaladze and M. A. Samuel, Phys. Rev. Lett. 66, 560 (1991); S. G. Gorishny, A. L. Kataev, and S. A. Larin, Phys. Lett. B 259, 144 (1991).

    ADS  Google Scholar 

  36. A. L. Kataev and V. V. Starshenko, Mod. Phys. Lett. A 10, 235 (1995).

    ADS  Google Scholar 

  37. O. V. Tarasov, A. A. Vladimirov, and A. Yu. Zharkov, Phys. Lett. B 93B, 429 (1980); S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B 303, 334 (1993).

    ADS  Google Scholar 

  38. T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B 400, 379 (1997).

    ADS  Google Scholar 

  39. K. G. Chetyrkin, S. G. Gorishny, and V. P. Spiridonov, Phys. Lett. B 160B, 149 (1985).

    ADS  Google Scholar 

  40. L.-E. Adam and K. G. Chetyrkin, Phys. Lett. B 329, 129 (1994).

    ADS  Google Scholar 

  41. E. Braaten and C. S. Li, Phys. Rev. D 42, 3888 (1990).

    ADS  Google Scholar 

  42. Particle Data Group (K. Hagiwara et al.), Phys. Rev. D 66, 010001 (2002).

  43. ALEPH Collab. (R. Barate et al.), Eur. Phys. J. C 11, 599 (1999).

    ADS  Google Scholar 

  44. OPAL Collab. (G. Abbiendi et al.), Eur. Phys. J. C 19, 653 (2001).

    ADS  Google Scholar 

  45. I. L. Solovtsov and D. V. Shirkov, Phys. Rev. Lett. 79, 1209 (1997); I. L. Solovtsov and D. V. Shirkov, Teor. Mat. Fiz. 120, 1210 (1999).

    ADS  Google Scholar 

  46. B. V. Geshkenbein and B. L. Ioffe, Pis'ma Zh. Éksp. Teor. Fiz. 70, 167 (1999) [JETP Lett. 70, 161 (1999)].

    Google Scholar 

  47. K. G. Chetyrkin, S. Narison, and V. I. Zakharov, Nucl Phys. B 550, 353 (1999).

    Article  ADS  Google Scholar 

  48. T. Shafer and E. V. Shuryak, Rev. Mod. Phys. 70, 323 (1998).

    ADS  Google Scholar 

  49. B. L. Ioffe and K. N. Zyablyuk, hep-ph/0207183.

  50. V. B. Berestetskii and I. Ya. Pomeranchuk, Zh. Éksp. Teor. Fiz. 29, 864 (1955) [Sov. Phys. JETP 2, 580 (1956)].

    Google Scholar 

  51. J. Schwinger, Particles, Sources, and Fields (Addison-Wesley, Reading, 1970; Mir, Moscow, 1976), Vol. 2.

    Google Scholar 

  52. A. H. Hoang, J. H. Kuhn, and T. Teubner, Nucl. Phys. B 452, 173 (1995); K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Nucl. Phys. B 482, 213 (1996); K. G. Chetyrkin et al., Nucl. Phys. B 503, 339 (1997); Eur. Phys. J. C 2, 137 (1998).

    Article  ADS  Google Scholar 

  53. D. J. Broadhurst et al., Phys. Lett. B 329, 103 (1994).

    ADS  Google Scholar 

  54. S. N. Nikolaev and A. V. Radyushkin, Yad. Fiz. 39, 147 (1984) [Sov. J. Nucl. Phys. 39, 91 (1984)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 66, No. 1, 2003, pp. 32–46.

Original English Text Copyright © 2003 by Ioffe.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, B.L. Condensates in quantum chromodynamics. Phys. Atom. Nuclei 66, 30–43 (2003). https://doi.org/10.1134/1.1540654

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1540654

Keywords

Navigation