Skip to main content
Log in

Formation of ordered helium pores in amorphous silicon subjected to low-energy helium ion irradiation

  • Solid-State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irradiated on the (110) end face by low-energy (E=17 keV) He+ ions at doses ranging from 5×1016 to 4.5×1017 cm−2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3×1017 cm−3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nanopores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at 600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm−1 discovered in the helium-doped a-Si layer are identified as low-energy He+ ion tracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Raineri, P. G. Fallica, G. Percolla, et al., J. Appl. Phys. 78, 3727 (1995).

    Article  ADS  Google Scholar 

  2. Sh. Sh. Ibragimov and V. F. Reutov, USSR Inventor’s Certificate No. 1282757 (1983).

  3. A. Agarwal, T. E. Haynes, V. C. Venezia, et al., Appl. Phys. Lett. 72, 1086 (1998).

    Article  ADS  Google Scholar 

  4. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  5. T. Takagahara and K. Takeda, Phys. Rev. B 46, 15578 (1992).

    Google Scholar 

  6. R. Siegele, G. C. Weatherly, H. K. Haugen, et al., Appl. Phys. Lett. 66, 1319 (1995).

    Article  ADS  Google Scholar 

  7. V. F. Reutov and A. S. Sokhatskii, Pis’ma Zh. Tekh. Fiz. 28(14), 83 (2002) [Tech. Phys. Lett. 28, 615 (2002)].

    Google Scholar 

  8. V. Raineri, S. Coffa, M. Saggio, et al., Nucl. Instrum. Methods Phys. Res. B 47, 292 (1999).

    ADS  Google Scholar 

  9. M. van Wieringen and N. Warmoltz, Physica (Utrecht) 22, 849 (1956).

    Google Scholar 

  10. C. C. Griffioen, J. H. Evans, P. C. de Jong, and A. van Veen, Nucl. Instrum. Methods Phys. Res. B 28, 360 (1987).

    ADS  Google Scholar 

  11. M. Alatalo, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 46, 12806 (1992).

    Google Scholar 

  12. D. Estreicher, J. Weber, A. Derecskei-Kovacs, and D. S. Marynick, Phys. Rev. B 55, 5037 (1997).

    Article  ADS  Google Scholar 

  13. V. F. Reutov and A. S. Sokhatskii, Materialovedenie, No. 10, 6 (1998).

  14. V. F. Reutov, A. S. Sokhatsky, V. B. Kutner, and A. N. Lebedev, Nucl. Instrum. Methods Phys. Res. B 49, 319 (1999).

    ADS  Google Scholar 

  15. W. Jäger, R. Manzke, H. Trinkaus, et al., Radiat. Eff. 78, 315 (1983).

    Google Scholar 

  16. R. Le. Toullec, P. Loubeyre, and J.-P. Pinceaux, Phys. Rev. B 40, 2368 (1989).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Tekhnichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 73, No. 1, 2003, pp. 73–78.

Original Russian Text Copyright © 2003 by Reutov, Sokhatski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reutov, V.F., Sokhatskii, A.S. Formation of ordered helium pores in amorphous silicon subjected to low-energy helium ion irradiation. Tech. Phys. 48, 68–72 (2003). https://doi.org/10.1134/1.1538730

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1538730

Keywords

Navigation