Skip to main content
Log in

Peculiarities of the magnetic, galvanomagnetic, elastic, and magnetoelastic properties of Sm1−x SrxMnO3 manganites

  • Solids
  • Electronic Properties
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Manganites of the Sm1− xSrxMnO3 system (x=0.33, 0.4, and 0.45) possess giant negative values of the magnetoresistance Δρ/ρ and the volume magnetostriction ω near the Curie temperature T C. In the compound with x=0.33, the isotherms of Δρ/ρ, ω, and magnetization σ exhibit smooth variation and do not reach saturation up to maximum magnetic field strengths (120 kOe) studied (according to the neutron diffraction data, this substance comprises a ferromagnetic (FM) matrix with distributed clusters of a layered antiferromagnetic (AFM) structure of the A type). In the compounds with x=0.4 and 0.45 containing, besides the FM matrix and A-type AFM phase, a charge-ordered AFM phase of the CE type (thermally stable to higher temperatures as compared to the A-type AFM and the FM phases), the same isotherms measured at TT C show a jumplike increase in the interval of field strengths between H c1 and H c2 and then reach saturation. In the interval H c1 > H > H c2, the σ, ω, and Δρ/ρ values exhibit a metastable behavior. At temperatures above T C, the anisotropic magnetostriction changes sign, which is indicative of rearrangements in the crystal structure. The giant values of ω and Δρ/ρ observed at TT C for all compounds, together with excess (relative to the linear) thermal expansion and a maximum on the ρ(T) curve, are explained by the phenomenon of electron phase separation caused by a strong s-d exchange. The giant values of magnetoresistance and volume magnetostriction (with ω reaching ∼10−3) are attributed to an increase in the volume of the FM phase induced by the applied magnetic field. In the compound with x=0.33, this increase proceeds smoothly as the FM phase grows through the FM layers in the A-type AFM phase. In the compounds with x=0.4 and 0.45, the FM phase volume increases at the expense of the charge-ordered CE-type AFM structure (in which spins of the neighboring manganese ions possess an AFM order). The jumps observed on the σ(H) curves, whereby the magnetization σ reaches ∼70% of the value at T=1.5 K, are indicative of a threshold character of the charge-ordered phase transition to the FM state. Thus, the giant values of ω and Δρ/ρ are inherent in the FM state, appearing as a result of the magnetic-field-induced transition of the charge-ordered phase to the FM state, rather than being caused by melting of this phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys. Usp. 39, 781 (1996)].

    Google Scholar 

  2. E. L. Nagaev, Phys. Rep. 346, 381 (2001).

    Article  Google Scholar 

  3. E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  4. C. N. R. Rao, A. K. Cheetham, and R. Mahesh, Chem. Mater. 8, 2421 (1996).

    Article  Google Scholar 

  5. A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).

    Article  ADS  Google Scholar 

  6. A. Raveau, A. Maignan, C. Martin, and M. Hervieu, Chem. Mater. 10, 2641 (1998).

    Article  Google Scholar 

  7. L. P. Gor’kov, Usp. Fiz. Nauk 168, 665 (1998) [Phys. Usp. 41, 589 (1998)].

    Google Scholar 

  8. Y. Tokura and Y. Tamioka, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  ADS  Google Scholar 

  9. J. M. D. Coey, M. Viret, and M. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  10. V. M. Loktev and Yu. G. Pogorelov, Fiz. Nizk. Temp. 26, 231 (2000) [Low Temp. Phys. 26, 171 (2000)].

    Google Scholar 

  11. Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 171, 121 (2001).

    Google Scholar 

  12. M. Yu. Kagan and K. I. Kugel’, Usp. Fiz. Nauk 171, 577 (2001).

    Google Scholar 

  13. L. I. Koroleva, R. V. Demin, and A. M. Balbashov, Pis’ma Zh. Éksp. Teor. Fiz. 65, 449 (1997) [JETP Lett. 65, 474 (1997)].

    Google Scholar 

  14. R. V. Demin, L. I. Koroleva, and A. M. Balbashov, Phys. Lett. A 231, 279 (1997).

    Article  ADS  Google Scholar 

  15. R. V. Demin, L. I. Koroleva, R. Szymszak, and H. Szymszak, Pis’ma Zh. Éksp. Teor. Fiz. 75, 402 (2002) [JETP Lett. 75, 331 (2002)].

    Google Scholar 

  16. A. Abramovich, L. Koroleva, A. Michurin, et al., Physica B (Amsterdam) 293, 38 (2000).

    ADS  Google Scholar 

  17. A. I. Abramovich, L. I. Koroleva, A. V. Michurin, et al., Fiz. Tverd. Tela (St. Petersburg) 42, 1451 (2000) [Phys. Solid State 42, 1494 (2000)].

    Google Scholar 

  18. C. Margina, R. Ibarra, A. I. Abramovich, et al., J. Magn. Magn. Mater. 226–230, 999 (2001).

    Google Scholar 

  19. A. Yanase and T. Kasuya, J. Phys. Soc. Jpn. 25, 1025 (1968).

    Google Scholar 

  20. V. V. Runov, D. Yu. Chernyshov, A. I. Kurbakov, et al., Zh. Éksp. Teor. Fiz. 118, 1174 (2000) [JETP 91, 1017 (2000)].

    Google Scholar 

  21. C. Martin, A. Maignan, M. Hervieu, and B. Raveau, Phys. Rev. B 60, 12191 (1999).

    Google Scholar 

  22. V. V. Runov, H. Glattli, G. V. Kopitsa, et al., Pis’ma Zh. Éksp. Teor. Fiz. 69, 323 (1999) [JETP Lett. 69, 353 (1999)].

    Google Scholar 

  23. V. Runov, H. Glattli, G. Kopitsa, et al., Physica B (Amsterdam) 276–278, 795 (2000).

    Google Scholar 

  24. I. D. Luzyanin, V. A. Ryzhov, D. Yu. Chernyshov, et al., Phys. Rev. B 64, 094432 (2001).

    Google Scholar 

  25. K. P. Belov, L. I. Koroleva, M. A. Shalimova, et al., Zh. Éksp. Teor. Fiz. 72, 1994 (1977) [Sov. Phys. JETP 45, 1047 (1977)].

    Google Scholar 

  26. J. Rodriguez-Carvajal, M. Hennion, F. Moussa, et al., Phys. Rev. B 57, R3189 (1998).

    ADS  Google Scholar 

  27. Y. Tomioka, H. Kuwahara, A. Asamitsu, et al., Appl. Phys. Lett. 70, 3609 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 5, 2002, pp. 1063–1073.

Original Russian Text Copyright © 2002 by Abramovich, Koroleva, Michurin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abramovich, A.I., Koroleva, L.I. & Michurin, A.V. Peculiarities of the magnetic, galvanomagnetic, elastic, and magnetoelastic properties of Sm1−x SrxMnO3 manganites. J. Exp. Theor. Phys. 95, 917–926 (2002). https://doi.org/10.1134/1.1528684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528684

Keywords

Navigation