Skip to main content
Log in

Model of a periodic sequence (trajectory) of the results of measurements of atomic states at a micromaser output

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method of stochastic recurrent relation is used for simulating a random sequence (trajectory) of the counts of a detector of atomic states at the output of a single-atom micromaser. A random sequence of the relative frequencies of counts of a detector during a fixed time interval is calculated. The frequencies of counts vary randomly near the average time-independent level. It is assumed that these average levels are reproducible observables for each random trajectory. A micromaser can jumpwise transfer from one average level of the relative frequencies of counts to another. It is assumed that a certain subensemble of the states of a field mode corresponds to each measured average level of the frequencies of counts. A method is proposed for calculating possible average relative frequencies of counts and corresponding (mean) reduced density matrices of the mode ρst. The matrix ρst characterizes a micromaser during its development along a specified periodic trajectory. It is found by solving the eigenvalue problem for the evolution operator on the period. An analytic method for solving this problem is developed. The matrix ρ st is the solution to the inverse problem of the reconstruction of the statistics of a field mode from the statistics of a random trajectory. The procedure of selecting the parameters of the evolution operator on the period is discussed through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73, 565 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Filipowicz, J. Javanainen, and P. Meystre, Phys. Rev. A 34, 3077 (1986).

    Article  ADS  Google Scholar 

  3. P. Meystre and E. M. Wright, Phys. Rev. A 37, 2524 (1988).

    Article  ADS  Google Scholar 

  4. O. Benson, G. Raithel, and H. Walther, Phys. Rev. Lett. 72, 3506 (1994).

    Article  ADS  Google Scholar 

  5. G. Rempe and H. Walter, Phys. Rev. A 42, 1650 (1990).

    Article  ADS  Google Scholar 

  6. C. Wagner, R. J. Brecha, A. Schenzle, and H. Walter, Phys. Rev. A 46, R5350 (1992); 47, 5068 (1993).

    Article  ADS  Google Scholar 

  7. L. A. Lugiato, M. O. Scully, and H. Walther, Phys. Rev. A 36, 740 (1987).

    Article  ADS  Google Scholar 

  8. H.-J. Briegel, B.-G. Englert, N. Sterpi, and H. Walter, Phys. Rev. A 49, 2962 (1994).

    ADS  Google Scholar 

  9. U. Herzog, Phys. Rev. A 50, 783 (1994).

    Article  ADS  Google Scholar 

  10. C. Wagner, A. Schenzle, and H. Walter, Opt. Commun. 107, 318 (1994).

    Article  ADS  Google Scholar 

  11. U. Herzog, Phys. Rev. A 52, 602 (1995).

    Article  ADS  Google Scholar 

  12. U. Herzog, Phys. Rev. A 61, 047801 (2000).

    Google Scholar 

  13. B.-G. Englert, T. Gantsog, A. Schenzle, et al., Phys. Rev. A 53, 4386 (1996).

    Article  ADS  Google Scholar 

  14. D. B. Johnson and W. C. Schieve, Phys. Rev. A 63, 033808 (2001).

    Google Scholar 

  15. R. R. McGowan and W. C. Schieve, Phys. Rev. A 59, 778 (1999).

    Article  ADS  Google Scholar 

  16. J. von Neumann, Mathematische Grudlagen der Quantenmechanik (Springer-Verlag, Berlin, 1932).

    Google Scholar 

  17. E. T. Jaynes and F. W. Cummings, Proc. IEEE 5, 89 (1963).

    Google Scholar 

  18. I. P. Vadeiko, G. P. Miroshnichenko, A. V. Rybin, and J. Timonen, Opt. Spektrosk. 89, 328 (2000) [Opt. Spectrosc. 89, 300 (2000)]; G. P. Miroshnichenko, I. P. Vadeiko, A. V. Rybin, and J. Timonen, Pis’ma Zh. Éksp. Teor. Fiz. 72, 647 (2000) [JETP Lett. 72, 449 (2000)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 5, 2002, pp. 965–977.

Original Russian Text Copyright © 2002 by Miroshnichenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miroshnichenko, G.P. Model of a periodic sequence (trajectory) of the results of measurements of atomic states at a micromaser output. J. Exp. Theor. Phys. 95, 833–843 (2002). https://doi.org/10.1134/1.1528674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528674

Keywords

Navigation