Skip to main content
Log in

Single-atom laser: Coherent and nonclassical effects in the regime of a strong atom-field correlation

  • Atoms, Spectra, Radiation
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the approximation of strong correlations between an atom and an intracavity field, which implies the equal probabilities of finding the atom in the ground state and n photons in the field and of finding the atom in an excited state and n−1 photons in the field, it is shown that the conditional states of a field generated by a single-atom laser are described by the diagonal part of the generalized coherent Mittag-Leffler state. The quasi-distributions P and Q of the intracavity-field probability amplitude are found, and the boundedness of the Glauber function on a segment is shown. The possibility of inversionless lasing is demonstrated, and the absence of a lasing threshold is found for some region of parameters. The regimes of generation of the amplitude-squeezed states of the field are studied and the parameters of the system providing the maximum squeezing are determined. It is shown that the atom-field states are entangled at weak pump intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Kimble, in Cavity Quantum Electrodynamics, Ed. by P. R. Berman (Academic, New York, 1994), p. 203; H. Walther, Opt. Spektrosk. 91, 359 (2001) [Opt. Spectrosc. 91, 327 (2001)].

    Google Scholar 

  2. Yu. Mu and C. M. Savage, Phys. Rev. A 46, 5944 (1992).

    Article  ADS  Google Scholar 

  3. M. Löffler, G. M. Meyer, and H. Walther, Phys. Rev. A 55, 3923 (1997).

    ADS  Google Scholar 

  4. M. Löffler, G. M. Meyer, and H. Walther, Europhys. Lett. 37, 317 (1997).

    ADS  Google Scholar 

  5. A. V. Kozlovskii and A. N. Oraevskii, Zh. Éksp. Teor. Fiz. 115, 1210 (1999) [JETP 88, 666 (1999)].

    Google Scholar 

  6. H. J. Carmichael, Phys. Rev. A 56, 5065 (1997); O. A. Kocharovskaya and Ya. I. Khanin, Pis’ma Zh. Éksp. Teor. Fiz. 48, 581 (1988) [JETP Lett. 48, 630 (1988)].

    Article  ADS  Google Scholar 

  7. T. B. Karlovich and S. Ya. Kilin, Opt. Spektrosk. 91, 375 (2001) [Opt. Spectrosc. 91, 343 (2001)].

    Google Scholar 

  8. J.-M. Sixdeniers, K. A. Penson, and A. I. Solomon, J. Phys. A 32, 7543 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. Yu. A. Brychkov and A. P. Prudnikov, Integral Transforms of Generalized Functions (Nauka, Moscow, 1977; Gordon and Breach, New York, 1989).

    Google Scholar 

  10. V. I. Man’ko, G. Marmo, E. C. G. Sudarshan, and F. Zaccaria, Phys. Scr. 55, 128 (1997).

    Google Scholar 

  11. P. R. Rice and H. J. Carmichael, Phys. Rev. A 50, 4318 (1994).

    ADS  Google Scholar 

  12. F. DeMartini and G. R. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988); F. DeMartini, F. Cairo, P. Mataloni, and F. Verezegnassi, Phys. Rev. A 46, 4220 (1992); G. Björk and Y. Yamamoto, IEEE J. Quantum Electron. QE-27, 2386 (1991); Y. Yamamoto, S. Machida, and G. Björk, Opt. Quantum Electron. 24, S215 (1992); Y. Yamamoto and R. E. Slusher, Phys. Today 46 (6), 66 (1993); X. Wang, R. A. Linke, G. Devlin, and H. Yokoyama, Phys. Rev. A 47, R2488 (1993).

    ADS  Google Scholar 

  13. M. Lax and M. Zwanzinger, Phys. Rev. A 7, 750 (1973); M. O. Scully and M. S. Zubariy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1999), p. 336.

    Article  ADS  Google Scholar 

  14. C. J. Hood, T. W. Lynn, A. C. Doherty, et al., Science 287, 1447 (2000); P. W. H. Pinkse, T. Fischer, P. Maunz, et al., J. Mod. Opt. 47, 2769 (2000).

    Article  ADS  Google Scholar 

  15. J. Ye, D. W. Vernooy, and H. J. Kimble, quant-ph/9908007.

  16. S. Ya. Kilin, Quantum Optics: Fields and Their Detection (Nauka i Tekhnika, Minsk, 1990), p. 31; V. Bužek and P. L. Knight, Prog. Opt. 34, 11 (1995).

    Google Scholar 

  17. B. Daeubler, H. Risken, and L. Schoendoff, Phys. Rev. A 48, 3955 (1993).

    Article  ADS  Google Scholar 

  18. Handbook of Mathematical Functions, Ed. by M. Abramowitz and I. A. Stegun (National Bureau of Standards, Washington, 1964; Nauka, Moscow, 1979).

    Google Scholar 

  19. J. Perina and L. Mista, Phys. Lett. A 27, 217 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 5, 2002, pp. 933–949.

Original Russian Text Copyright © 2002 by Kilin, Karlovich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilin, S.Y., Karlovich, T.B. Single-atom laser: Coherent and nonclassical effects in the regime of a strong atom-field correlation. J. Exp. Theor. Phys. 95, 805–819 (2002). https://doi.org/10.1134/1.1528672

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528672

Keywords

Navigation