Skip to main content
Log in

Electromagnetic activity of a pulsating paramagnetic neutron star

  • Gravitation, Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. [1] that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of non-radial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Akhiezer, N. V. Laskin, and S. V. Peletminskii, Zh. Éksp. Teor. Fiz. 109, 1981 (1996) [JETP 82, 1066 (1996)].

    Google Scholar 

  2. M. Kutschera and W. Wójick, Acta Phys. Pol. B 27, 2277 (1996).

    Google Scholar 

  3. P. Haensel and S. Bonazzola, Mon. Not. R. Astron. Soc. 314, 1017 (1996).

    ADS  Google Scholar 

  4. M. Kutschera, Mon. Not. R. Astron. Soc. 307, 784 (1999); T. Tatsumi, Phys. Lett. B 489, 280 (2000).

    Article  ADS  Google Scholar 

  5. D. H. Brownell and J. Callaway, Nuovo Cimento B 60, 169 (1969); S. D. Silverstein, Phys. Rev. Lett. 23, 139 (1969); M. J. Rice, Phys. Lett. A 29, 637 (1969).

    Google Scholar 

  6. J. W. Clark and N.-C. Chao, Nuovo Cimento Lett. 2, 185 (1969); J. W. Clark, Phys. Rev. Lett. 23, 1463 (1969); E. Ostgaard, Nucl. Phys. A 154, 202 (1970); V. R. Pandharipanda, V. K. Garde, and J. K. Srivastava, Phys. Lett. B 38, 485 (1970).

    Google Scholar 

  7. R. F. O’Connel and K. M. Rousell, Astron. Asprohys. 18, 198 (1972); J. Pfarr, Z. Phys. A 251, 152 (1972); J. Schmidt-Burgk, Astron. Astrophys. 26, 335 (1973); P. Haensel, Phys. Rev. C 11, 1822 (1975); M. Modarres and J. M. Irvine, J. Phys. G 5, 1333 (1977).

    ADS  Google Scholar 

  8. D. N. Sedrakyan, K. M. Shakhbazyan, and A. G. Movsesyan, Astrofizika 21, 547 (1984); R. F. Sawyer, Phys. Rev. C 40, 865 (1989); S. Marcos, R. Niembro, M. L. Quelle, and J. Navarro, Phys. Lett. B 271, 373 (1991); M. Kutschera and W. Wójick, Acta Phys. Pol. B 23, 947 (1992).

    ADS  Google Scholar 

  9. A. I. Akhiezer, V. G. Baryakhtar, and S. V. Peletminskii, Spin Waves (Nauka, Moscow, 1967; Interscience, New York, 1968).

    Google Scholar 

  10. E. M. Lifshitz and L. P. Pitaevski, Statistical Physics (Butterworth-Heinenann, Oxford, 1998), Part 2.

    Google Scholar 

  11. A. G. Gurevich and G. A. Melkov, Magnetic Oscillations and Waves (Nauka, Moscow, 1994).

    Google Scholar 

  12. F. Weber, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics (Institute of Physics, Bristol, 1999).

    Google Scholar 

  13. G. S. Bisnovaty-Kogan, Stellar Physics (Springer-Verlag, Berlin, 2002).

    Google Scholar 

  14. H. F. Tiersten, J. Math. Phys. 5, 1298 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Bastrukov, J. Yang, D. Podgainy, and O. Streltsova, in Hot Points in Astrophysics, Ed. by V. B. Belyaev and G. V. Efimov (Joint Institute for Nuclear Researches, Dubna, 2000), p. 206.

    Google Scholar 

  16. S. Bastrukov, J. Yang, D. Podgainy, and D. F. Weber, in Explosive Phenomena in Astrophysical Compact Objects, Ed. by C.-H. Lee, M. Rho, I. Yi, and H. K. Lee; AIP Conf. Proc. 556, 197 (2001).

  17. S. Bastrukov, J. Yang, D. Podgainy, and F. Weber, in Soft Gamma Repeaters, Ed. by M. Ferroti and S. Mareghetti (2002).

  18. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  19. W. F. Brown, Magnetoelastic Principles in Ferromagnetism (North-Holland, Amsterdam, 1962).

    Google Scholar 

  20. L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevski, Theory of Elasticity (Butterworth-Heinenann, Oxford, 1995).

    Google Scholar 

  21. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevski, Electrodynamics of Continuous Media (Butterworth-Heinenann, Oxford, 1995).

    Google Scholar 

  22. J. Yang and S. I. Bastrukov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 577 (2000) [JETP Lett. 711, 395 (2000)]; A. A. Mamun and P. K. Shukla, Pis’ma Zh. Éksp. Teor. Fiz. 75, 259 (2002) [JETP Lett. 75, 213 (2002)]; S. I. Bastrukov and J. Yang, Phys. Scr. 65, 340 (2002).

    Google Scholar 

  23. H. M. van Horn, Astrophys. J. 236, 899 (1980); P. M. McDermott, H. M. van Horn, and C. J. Hansen, Astrophys. J. 325, 725 (1988); T. E. Strohmayer, Astrophys. J. 372, 573 (1991).

    ADS  Google Scholar 

  24. S. I. Bastrukov, F. Weber, and D. V. Podgainy, J. Phys. G 25, 107 (1999).

    Article  ADS  Google Scholar 

  25. S. I. Bastrukov, I. V. Molodtsova, D. V. Podgainy, et al., Fiz. Élem. Chastits At. Yadra 30, 992 (1999) [Phys. Part. Nucl. 30, 436 (1999)].

    Google Scholar 

  26. T. E. Strohmayer, J. M. Cordes, and H. M. van Horn, Astrophys. J. 389, 685 (1992).

    Article  ADS  Google Scholar 

  27. H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, 1932; Gostekhizdat, Moscow, 1947).

    Google Scholar 

  28. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge Univ. Press, Cambridge, 1927; ONTI, Moscow, 1935); P. M. Morse and H. Feshbach, Methods of Theoretical Physics McGraw-Hill, New York, 1953; Inostrannaya Literatura, Moscow, 1958).

    Google Scholar 

  29. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon, Oxford, 1961).

    Google Scholar 

  30. S. I. Bastrukov, Phys. Rev. E 49, 3166 (1994); S. I. Bastrukov and D. V. Podgainy, Physica A (Amsterdam) 250, 345 (1998).

    Article  ADS  Google Scholar 

  31. I. E. Dzyaloshinskii, Phys. Lett. A 202, 403 (1995).

    Article  ADS  Google Scholar 

  32. P. Goldreich and W. H. Julian, Astrophys. J. 157, 869 (1969).

    Article  ADS  Google Scholar 

  33. V. S. Beskin, A. V. Gurevich, and Ya. N. Istomin, Physics of the Pulsar Magnetosphere (Cambridge Univ. Press, Cambridge, 1992); F. C. Michel and H. Li, Phys. Rep. 318, 227 (1999).

    Google Scholar 

  34. R. C. Duncan and C. Thompson, Astrophys. J. 392, L9 (1992); B. Paczyński, Acta Astron. 42, 145 (1992).

    Article  ADS  Google Scholar 

  35. K. Hurley, C. Kouveliotou, P. Woods, et al., Astrophys. J. Lett. 519, L143 (1999).

    Article  ADS  Google Scholar 

  36. O. Blaes, R. Blandford, P. Goldreich, and P. Madau, Astrophys. J. 343, 839 (1989); L. M. Franco, B. Link, and R. I. Epstein, Astrophys. J. 543, 987 (2000).

    Article  ADS  Google Scholar 

  37. B. Cheng, R. I. Epstein, R. A. Guyer, and C. Young, Nature 382, 518 (1996); R. Duncan, Astrophys. J. 498, L45 (1998).

    Article  ADS  Google Scholar 

  38. C. Y. Cardall, M. Prakash, and J. Lattimer, Astrophys. J. 554, 322 (2001).

    Article  ADS  Google Scholar 

  39. K. Hirotani, Astrophys. J. 549, 495 (2000).

    ADS  Google Scholar 

  40. V. L. Ginzburg, Dokl. Akad. Nauk SSSR 156, 43 (1964) [Sov. Phys. Dokl. 9, 329 (1964)]; L. Woltjer, Astrophys. J. 140, 1309 (1964).

    MathSciNet  Google Scholar 

  41. G. Chanmugam, Annu. Rev. Astron. Astrophys. 30, 143 (1992); V. Trimble, Beam Line (Stanford) 25, 41 (1995); S. Konar and D. Bhattacharya, Mon. Not. R. Astron. Soc. 308, 795 (1999).

    Article  ADS  Google Scholar 

  42. S. I. Bastrukov, V. V. Papoyan, and D. V. Podgainy, Pis’ma Zh. Éksp. Teor. Fiz. 64, 593 (1996) [JETP Lett. 64, 637 (1996)]; Astrophysics 40, 46 (1997).

    Google Scholar 

  43. P. Goldreich and A. Reisenegger, Astrophys. J. 395, 250 (1992); S. I. Vainshtein, S. M. Chitre, and A. V. Olinto, Phys. Rev. E 61, 4422 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 122, No. 5, 2002, pp. 915–927.

Original English Text Copyright © 2002 by Bastrukov, Podgainy, Yang, Weber.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastrukov, S.I., Podgainy, D.V., Yang, J. et al. Electromagnetic activity of a pulsating paramagnetic neutron star. J. Exp. Theor. Phys. 95, 789–799 (2002). https://doi.org/10.1134/1.1528670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528670

Keywords

Navigation