Skip to main content
Log in

Diagnostics of a magnetized plasma by the field of surface waves guided by a discharge channel

  • Plasma Diagnostics
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A diagnostic method for determining plasma density from the dispersion of surface waves guided by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploiting these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a probing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the plasma density averaged over the cross section of the plasma column on the strength of the external magnetic field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower hybrid) waves and whistlers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Golant, in Handbook of Plasma Physics, Ed. by A. A. Galeev and R. Sudan (Énergoatomizdat, Moscow, 1984; North-Holland, Amsterdam, 1984), Vol. 2.

    Google Scholar 

  2. F. F. Chen and R. W. Boswell, IEEE Trans. Plasma Sci. 25, 1245 (1977).

    Google Scholar 

  3. A. N. Kondratenko, Plasma Waveguides (Atomizdat, Moscow, 1976).

    Google Scholar 

  4. I. G. Kondrat'ev, A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas (Gordon and Breach, Amsterdam, 1999).

    Google Scholar 

  5. G. A. Markov, V. A. Mironov, and A. M. Sergeev, Pis'ma Zh. Éksp. Teor. Fiz. 29, 672 (1979) [JETP Lett. 29, 617 (1979)].

    Google Scholar 

  6. G. A. Markov, Zh. Éksp. Teor. Fiz. 113, 1989 (1998) [JETP 86, 703 (1998)].

    Google Scholar 

  7. V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).

    Google Scholar 

  8. G. A. Markov, Fiz. Plazmy 14, 1094 (1988) [Sov. J. Plasma Phys. 14, 641 (1988)].

    Google Scholar 

  9. I. A. Vdovichenko, G. A. Markov, V. A. Mironov, and A. M. Sergeev, Pis'ma Zh. Éksp. Teor. Fiz. 44, 216 (1986) [JETP Lett. 44, 275 (1986)].

    Google Scholar 

  10. A. V. Kudrin, L. E. Kurina, and G. A. Markov, Zh. Éksp. Teor. Fiz. 112, 1285 (1997) [JETP 85, 697 (1997)].

    Google Scholar 

  11. V. F. Vzyatyshev, Dielectric Waveguides (Sov. Radio, Moscow, 1970).

    Google Scholar 

  12. I. V. Katin and G. A. Markov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 42, 215 (1999).

    Google Scholar 

  13. V. V. Nikol'skii, Variational Methods for Internal Problems of Electrodynamics (Nauka, Moscow, 1967).

    Google Scholar 

  14. L. A. Vainshtein, Electromagnetic Waves (Radio i Svyaz', Moscow, 1988), p. 300.

    Google Scholar 

  15. A. B. Manenkov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24, 84 (1981).

    ADS  Google Scholar 

  16. G. A. Markov and I. V. Khazanov, Fiz. Plazmy 28, 307 (2002) [Plasma Phys. Rep. 28, 274 (2002)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 12, 2002, pp. 1077–1085.

Original Russian Text Copyright © 2002 by Bodrov, Markov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodrov, S.B., Markov, G.A. Diagnostics of a magnetized plasma by the field of surface waves guided by a discharge channel. Plasma Phys. Rep. 28, 992–1000 (2002). https://doi.org/10.1134/1.1528240

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1528240

Keywords

Navigation