Skip to main content
Log in

The possibility of emersion of the outer layers in a massive star simultaneously with iron-core collapse: A hydrodynamic model

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the behavior of the outer envelope in a massive star during and after the collapse of its iron core into a protoneutron star (PNS) in terms of the equations of one-dimensional spherically symmetric ideal hydrodynamics. The profiles obtained in the studies of the evolution of massive stars up to the final stages of their existence, immediately before a supernova explosion (Boyes et al. 1999), are used as the initial data for the distribution of thermodynamic quantities in the envelope. We use a complex equation of state for matter with allowances made for arbitrary electron degeneracy and relativity, the appearance of electron-positron pairs, the presence of radiation, and the possibility of iron nuclei dissociating into free nucleons and helium nuclei. We performed calculations with the help of a numerical scheme based on Godunov's method. These calculations allowed us to ascertain whether the emersion of the outer envelope in a massive star is possible through the following two mechanisms: first, the decrease in the gravitational mass of the central PNS through neutrino-signal emission and, second, the effect of hot nucleon bubbles, which are most likely formed in the PNS corona, on the envelope emersion. We show that the second mechanism is highly efficient in the range of acceptable masses of the nucleon bubbles (≤0.01M ) simulated in our hydrodynamic calculations in a rough, spherically symmetric approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Aksenov, Pis'ma Astron. Zh. 25, 226 (1999) [Astron. Lett. 25, 185 (1999)].

    Google Scholar 

  2. S. I. Blinnikov, N. V. Dunina-Barkovskaya, and D. K. Nadyozhin, Astrophys. J., Suppl. Ser. 106, 171 (1996).

    Article  ADS  Google Scholar 

  3. H. Boyes, A. Heger, and S. Woosley, www.supersci.org (1999).

  4. G. E. Brown, S. W. Bruenn, and J. S. Wheeler, Comments Astrophys. 16, 153 (1992).

    ADS  Google Scholar 

  5. A. Burrows and J. Goshy, Astrophys. J. Lett. 416, L75 (1993).

    Article  ADS  Google Scholar 

  6. P. Colella and H. M. Glas, J. Comput. Phys. 59, 264 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  8. W. Dai and P. R. Woodward, J. Comput. Phys. 134, 261 (1997).

    Article  MathSciNet  Google Scholar 

  9. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976).

    Google Scholar 

  10. V. S. Imshennik, Astrophysics on the Threshold of the 21st Centure, Ed. by N. S. Kardashev (Gordon and Breach, Philadelphia, 1992), p. 167.

    Google Scholar 

  11. V. S. Imshennik, Yad. Fiz. 65(11), (2002) (in press) [Phys. At. Nucl. 65 (11), (2002) (in press)].

  12. V. S. Imshennik and E. A. Zabrodina, Pis'ma Astron. Zh. 25, 123 (1999) [Astron. Lett. 25, 93 (1999)].

    Google Scholar 

  13. V. S. Imshennik and D. K. Nadyozhin, Astron. Zh. 42, 1154 (1965) [Sov. Astron. 9, 896 (1965)].

    ADS  Google Scholar 

  14. V. S. Imshennik and D. K. Nadyozhin, Itogi Nauki Tekh., Ser. Astron. 21, 63 (1982).

    Google Scholar 

  15. V. S. Imshennik and M. S. Popov, Pis'ma Astron. Zh. 27, 101 (2001) [Astron. Lett. 27, 81 (2001)].

    Google Scholar 

  16. V. S. Imshennik, S. S. Filippov, and A. M. Khokhlov, Pis'ma Astron. Zh. 7, 219 (1981) [Sov. Astron. Lett. 7, 121 (1981)].

    ADS  Google Scholar 

  17. I. A. Kibel, N. E. Kochin, and N. V. Roze, Theoretical Hydrodynamics (Fizmatgiz, Moscow, 1963).

    Google Scholar 

  18. V. I. Krylov, Approximate Calculation of Integrals (Nauka, Moscow, 1967; Macmillan, NewYork, 1962).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  21. J. M. Lattimer and A. Yahil, Astrophys. J. 340, 426 (1989).

    Article  ADS  Google Scholar 

  22. D. K. Nadyozhin, Astrophys. Space Sci. 51, 283 (1977).

    Article  ADS  Google Scholar 

  23. D. K. Nadyozhin, Astrophys. Space Sci. 53, 131 (1978).

    Article  ADS  Google Scholar 

  24. D. K. Nadyozhin, Surv. High Energy Phys. 11, 121 (1998).

    Google Scholar 

  25. T. A. Thompson, A. Burrows, and B. S. Meyer, Astrophys. J. 562, 887 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Pis'ma v Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 28, No. 12, 2002, pp. 913–927.

Original Russian Text Copyright © 2002 by Imshennik, Manukovskii, Nadyozhin, Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imshennik, V.S., Manukovskii, K.V., Nadyozhin, D.K. et al. The possibility of emersion of the outer layers in a massive star simultaneously with iron-core collapse: A hydrodynamic model. Astron. Lett. 28, 821–834 (2002). https://doi.org/10.1134/1.1525833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1525833

Key words

Navigation