Skip to main content
Log in

Gamma-ray bursts as a result of the interaction of a shock from a supernova and a neutron-star companion

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A supernova explosion in a close binary system in which one of the components is a compact magnetized object (neutron star or white dwarf) can form a narrow “tail” with length l t ∼109 cm, width h t ∼108 cm, and magnetic field B t ∼106, due to the resulting shock wave flowing around the magnetosphere of the compact object. The energy released by the reconnection of magnetic field lines in this tail can accelerate electrons to relativistic speeds (γ≈104), creating the conditions required for powerful synchrotron radiation at energies from hundreds of keV to several MeV, i.e., for a gamma-ray burst (GRB). The duration of this radiation will depend on the power of the shock that forms during the supernova. If the shock is not sufficiently powerful to tear off the magnetosphere tail from the compact object, the duration of the GRB will not exceed l t /V A ≤1 s, and the conditions necessary for an “afterglow” at softer energies will not arise. If the shock is more powerful, the tail can be torn from the magnetosphere, forming a narrow ejection, which is perceived in its relativistic motion toward the observer(Γ∼104) as an afterglow whose duration grows from tens of seconds at gamma-ray energies to tens of days in the optical. This may explain why afterglows are observed only in association with long GRBs (T 90>10 s). Very short GRBs (T 90<0.1 s) may be local, i.e., low-power, phenomena occurring in close pairs containing compact, magnetized objects, in which there is again an interaction between the magnetosphere of the compact object and a shock wave, but the shock is initiated by a flare on the companion, which is a red-dwarf cataclysmic variable, rather than by a supernova.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Meegan et al., www.batse.msfc.nasa.gov/data (1998).

  2. J. Grainer, www.Aip.de/~jcg/grbrsh.html.

  3. S. R. Kulkarni, S. G. Djorgovski, S. C. Odewaln, et al., Nature 348, 389 (1999).

    ADS  Google Scholar 

  4. P. M. Vreeswijk, A. Fruchter, L. Kap, et al., Astrophys. J. 546, 672 (2001).

    Article  ADS  Google Scholar 

  5. S. G. Djorgovski, D. A. Frail, S. R. Kulkarni, et al., astro-ph/0106574.

  6. G. S. Bisnovatyi-Kogan, Astron. Astrophys., Suppl. Ser. 138, 541 (1999); astro-ph/0103319.

    ADS  Google Scholar 

  7. D. B. Cline et al., Astrophys. J. 527, 827 (1999).

    Article  ADS  Google Scholar 

  8. D. B. Cline, C. Matthey, and S. Otwinovski, astro-ph/0105059.

  9. V. S. Imshennik and D. K. Nadezhin, Usp. Fiz. Nauk 156, 561 (1988).

    Google Scholar 

  10. L. Wang and J. C. Wheeler, Astrophys. J. 504, L87 (1998).

    Article  ADS  Google Scholar 

  11. E. Baron, Nature 395, 635 (1988).

    ADS  Google Scholar 

  12. S. Holland, J. P. U. Fynbo, J. Hjorth, et al., Astron. Astrophys. 371, 52 (2001).

    Article  ADS  Google Scholar 

  13. J. N. Reeves, D. Watson, J. P. Osborne, et al., Nature 416, 512 (2002).

    ADS  Google Scholar 

  14. V. V. Sokolov, astro-ph/0102492; astro-ph/0107399.

  15. R. M. Kippen, M. S. Briggs, J. M. Kommers, et al., Astrophys. J. 506, L27 (1998).

    Article  ADS  Google Scholar 

  16. B. Paczynski, Ann. (N.Y.) Acad. Sci. 688, 321 (1993).

    Article  ADS  Google Scholar 

  17. S. I. Blinnikov, I. D. Novikov, T. V. Perevodchikova, and A. G. Polnarev, Pis'ma Astron. Zh. 10, 422 (1984) [Sov. Astron. Lett. 10, 177 (1984)].

    ADS  Google Scholar 

  18. A. M. Cherepashchuk and K. A. Postnov, astro-ph/0012512.

  19. B. Paczynski, astro-ph/0103384.

  20. R. Cen, Astrophys. J. Lett. 524, L51 (1999).

    Article  ADS  Google Scholar 

  21. L. Wang and J. C. Wheeler, Astrophys. J. 504, L87 (1998).

    Article  ADS  Google Scholar 

  22. R. Cen, Astrophys. J. 507, L131 (1998).

    Article  ADS  Google Scholar 

  23. L. Nicastro, F. Nigro, N. D'Amico, et al., Astron. Astrophys. 368, 1055 (2001).

    Article  ADS  Google Scholar 

  24. G. S. Bisnovatyi-Kogan, Astrofizika 32, 313 (1990).

    ADS  Google Scholar 

  25. G. S. Bisnovatyi-Kogan, Astron. Zh. 47, 813 (1970) [Sov. Astron. 14, 652 (1971)].

    ADS  Google Scholar 

  26. B. Paczynski, Astrophys. J. Lett. 365, L9 (1990).

    Article  ADS  Google Scholar 

  27. G. S. Bisnovatyi-Kogan, Astrophys. Space Sci. 276, 259 (2001).

    Article  MATH  ADS  Google Scholar 

  28. M. Milgrom and V. V. Usov, Astrophys. J. 531, L127 (2000).

    Article  ADS  Google Scholar 

  29. S. I. Blinnikov, V. S. Imshennik, and D. K. Nadezhin, Astron. Zh. 67, 1181 (1990) [Sov. Astron. 34, 595 (1990)].

    ADS  Google Scholar 

  30. R. J. Protheroe and W. Bednarek, astro-ph/9904279.

  31. A. Dar and A. De R'yula, astro-ph/0012227.

  32. H. Umeda, astro-ph/9911135.

  33. E. Morietta, A. Burrows, and B. Fryxell, Astrophys. J., Suppl. Ser. 128, 615 (2000).

    ADS  Google Scholar 

  34. A. D. Sakharov, Usp. Fiz. Nauk 88, 725 (1966) [Sov. Phys. Usp. 9, 294 (1966)].

    Google Scholar 

  35. J. Scalo and J. C. Wheele, astro-ph/0105369.

  36. T. Magura, S. Mineshige, Y. Takaaki, and K. Shibata, Astrophys. J. 466, 1054 (1996).

    ADS  Google Scholar 

  37. K. Shibata and T. Yokayma, Astrophys. J. 526, L49 (1999).

    Article  ADS  Google Scholar 

  38. H. C. Spruit, F. Daigne, and G. Grenkhahn, Astron. Astrophys. 369, 694 (2001).

    Article  ADS  Google Scholar 

  39. A. I. Podgornyi and I. M. Podgornyi, Astron. Zh. 78, 71 (2001) [Astron. Rep. 45, 60 (2001)].

    Google Scholar 

  40. M. Tavani, Astrophys. J. 497, L21 (1998).

    ADS  Google Scholar 

  41. R. E. Gershberg, Low-Mass Flare Stars [in Russian] (Nauka, Moscow, 1978).

    Google Scholar 

  42. A. V. Ipatov and A. V. Stepanov, Vistas Astron. 41, 203 (1997).

    Article  ADS  Google Scholar 

  43. J. M. Ferreira, Astron. Astrophys. 335, 248 (1998).

    ADS  Google Scholar 

  44. E. A. Karitskaya, Astron. Zh. 52, 189 (1975) [Sov. Astron. 19, 112 (1975)].

    ADS  Google Scholar 

  45. M. N. Vahia and A. R. Rao, Astron. Astrophys. 207, 55 (1988).

    ADS  Google Scholar 

  46. E. P. Liong and H. Li, Astron. Astrophys. 273, L53 (1993).

    ADS  Google Scholar 

  47. A. R. Rao and M. N. Vahia, Astron. Astrophys. 281, L21 (1994).

    ADS  Google Scholar 

  48. J. Greiner and C. Motch, Astron. Astrophys. 294, 177 (1995).

    ADS  Google Scholar 

  49. B. I. Luchkov and O. M. Pomesheva, Astron. Zh. 75, 79 (1998) [Astron. Rep. 42, 68 (1998)].

    Google Scholar 

  50. I. V. Belousova, A. Mizaki, T. M. Roganova, and I. L. Rozental', Astron. Zh. 76, 841 (1999) [Astron. Rep. 43, 734 (1999)].

    Google Scholar 

  51. J. S. Bloom, S. R. Kulkarni, and S. G. Djorgovski astro-ph/0010176.

  52. K. Shibata, S. Masuda, M. Shimojo, et al., Astrophys. J. 451, L83 (1995).

    ADS  Google Scholar 

  53. K. V. Getman and M. A. Livshits, Astron. Zh. 77, 295 (2000) [Astron. Rep. 44, 255 (2000)].

    Google Scholar 

  54. V. Simon, R. Hudec, G. Rizzichini, et al., astro-ph/0108416.

  55. D. Lazzati, astro-ph/0011580.

  56. F. Pacrels, astro-ph/0004188.

  57. L. Amati, F. Frontera, H. Vietri, et al., astro-ph/0012318.

  58. P. Meszaros and M. J. Rees, astro-ph/0104402.

  59. D. Lazzati, G. Ghisellini, and H. Vietri, astro-ph/0104086.

  60. K. Kotake and S. Nagataki, astro-ph/0104485.

  61. E. Strohmayer and A. I. Ibrahin, astro-ph/0005431.

  62. Ya. I. Istomin and B. V. Komberg, Astron. Zh. 77, 852 (2000) [Astron. Rep. 44, 754 (2000)].

    Google Scholar 

  63. R. C. Duncan, astro-ph/0103235.

  64. D. A. Varshalovich and B. V. Komberg, Astron. Zh. 48, 1085 (1971) [Sov. Astron. 15, 858 (1972)].

    ADS  Google Scholar 

  65. I. F. Mirabel, L. F. Rodriguez, B. Cordier, et al., Nature 358, 215 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Astronomicheski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Zhurnal, Vol. 79, No. 11, 2002, pp. 1008–1018.

Original Russian Text Copyright © 2002 by Istomin, Komberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Istomin, Y.N., Komberg, B.V. Gamma-ray bursts as a result of the interaction of a shock from a supernova and a neutron-star companion. Astron. Rep. 46, 908–917 (2002). https://doi.org/10.1134/1.1522079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1522079

Keywords

Navigation