Skip to main content
Log in

Kinetics of domain structure and switching currents in single crystals of congruent and stoichiometric lithium tantalate

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A comparative analysis of polarization-switching kinetics in single crystals of congruent and stoichiometric lithium tantalate LiTaO3 is carried out by recording a sequence of instantaneous domain configurations (optical visualization of the evolution of the domain-structure) and the switching current simultaneously. A new mechanism of fast kinetics of domains in congruent lithium titanate due to the growth of steps formed during domain coalescence is discovered experimentally and studied with the help of computer simulation. Additional information on the domain kinetics in stoichiometric lithium tantalate is obtained on the basis of statistical analysis of the noise component of a switching current. A model is proposed for description of the jerky motion of domain walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Byer, J. Nonlinear Opt. Phys. Mater. 6, 549 (1997).

    Article  ADS  Google Scholar 

  2. G. Rosenman, A. Skliar, and A. Arie, Ferroelectr. Rev. 1, 263 (1999).

    Google Scholar 

  3. M. Yamada, M. Saitoh, and H. Ooki, Appl. Phys. Lett. 69, 3659 (1996).

    ADS  Google Scholar 

  4. R. G. Batchko, V. Ya. Shur, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 75, 1673 (1999).

    Article  ADS  Google Scholar 

  5. V. Ya. Shur, E. L. Rumyantsev, R. G. Bachko, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 1831 (1999) [Phys. Solid State 41, 1681 (1999)].

    Google Scholar 

  6. K. Kitamura, Y. Furukawa, K. Niwa, et al., Appl. Phys. Lett. 73, 3073 (1998).

    Article  ADS  Google Scholar 

  7. V. Gopalan and T. E. Mitchell, J. Appl. Phys. 85, 2304 (1999).

    Article  ADS  Google Scholar 

  8. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, J. Cryst. Growth 197, 889 (1999).

    Article  Google Scholar 

  9. V. Ya. Shur, A. L. Gruverman, V. V. Letuchev, et al., Ferroelectrics 98, 29 (1989).

    Google Scholar 

  10. V. Ya. Shur, in Ferroelectrics Thin Films: Synthesis and Basic Properties (Gordon and Breach, New York, 1996), Vol. 10, Chap. 6.

    Google Scholar 

  11. R. C. Miller and G. Weinreich, Phys. Rev. 117, 1460 (1960).

    ADS  Google Scholar 

  12. E. Fatuzzo and W. J. Merz, Ferroelectricity (North-Holland, Amsterdam, 1967).

    Google Scholar 

  13. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser Mat. 3, 355 (1937).

    Google Scholar 

  14. M. Avrami, J. Chem. Phys. 7, 1103 (1939); 8, 212 (1940); 9, 177 (1941).

    Article  Google Scholar 

  15. V. Ya. Shur, E. L. Rumyantsev, and S. D. Makarov, J. Appl. Phys. 84, 445 (1998).

    Article  ADS  Google Scholar 

  16. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Appl. Phys. Lett. 76, 143 (2000).

    ADS  Google Scholar 

  17. S. Kim, V. Gopalan, and B. Steiner, Appl. Phys. Lett. 77, 2051 (2000).

    ADS  Google Scholar 

  18. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, et al., Proc. SPIE 3992, 143 (2000).

    ADS  Google Scholar 

  19. V. Ya. Shur, E. L. Rumyantsev, E. V. Nikolaeva, and E. I. Shishkin, Appl. Phys. Lett. 77, 3636 (2000).

    Article  ADS  Google Scholar 

  20. V. Ya. Shur, E. L. Rumyantsev, and S. D. Makarov, Fiz. Tverd. Tela (St. Petersburg) 37, 1687 (1995) [Phys. Solid State 37, 917 (1995)].

    Google Scholar 

  21. V. Ya. Shur, S. D. Makarov, N. Yu. Ponomarev, et al., Fiz. Tverd. Tela (St. Petersburg) 38, 1889 (1996) [Phys. Solid State 38, 1044 (1996)].

    Google Scholar 

  22. V. Ya. Shur, E. L. Rumyantsev, S. A. Makarov, et al., Integr. Ferroelectr. 27, 179 (1999).

    Google Scholar 

  23. J. Russ, Fractal Surfaces (Plenum, New York, 1994).

    Google Scholar 

  24. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    Google Scholar 

  25. A. Hasmy, M. Foret, J. Pelous, and R. Jullien, Phys. Rev. B 48, 9345 (1993).

    Article  ADS  Google Scholar 

  26. M. Drougard and R. Landauer, J. Appl. Phys. 30, 1663 (1959).

    Article  Google Scholar 

  27. V. Ya. Shur, E. L. Rumyantsev, V. P. Kuminov, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 126 (1999) [Phys. Solid State 41, 112 (1999)].

    Google Scholar 

  28. V. Ya. Shur, A. L. Gruverman, V. P. Kuminov, and N. A. Tonkachyova, Ferroelectrics 111, 197 (1990).

    Google Scholar 

  29. B. Alessandro, C. Beatrice, G. Bertotti, and A. Montorsi, J. Appl. Phys. 68, 2908 (1990).

    ADS  Google Scholar 

  30. V. M. Fridkin, Photoferroelectrics (Nauka, Moscow, 1976; Springer, Berlin, 1979).

    Google Scholar 

  31. U. Robels and G. Arlt, J. Appl. Phys. 73, 3454 (1993).

    Article  ADS  Google Scholar 

  32. P. Lambeck and G. Jonker, J. Phys. Chem. Solids 47, 453 (1986).

    Google Scholar 

  33. I. Stolichnov, A. Tagantsev, N. Setter, et al., Appl. Phys. Lett. 74, 3552 (1999).

    Article  ADS  Google Scholar 

  34. V. Ya. Shur, E. V. Nikolaeva, E. I. Shishkin, et al., Appl. Phys. Lett. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 2055–2060.

Original Russian Text Copyright © 2002 by Shur, Nikolaeva, Shishkin, Kozhevnikov, Chernykh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shur, V.Y., Nikolaeva, E.V., Shishkin, E.I. et al. Kinetics of domain structure and switching currents in single crystals of congruent and stoichiometric lithium tantalate. Phys. Solid State 44, 2151–2156 (2002). https://doi.org/10.1134/1.1521472

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1521472

Keywords

Navigation