Skip to main content
Log in

Giant dielectric relaxation in SrTiO3-SrMg1/3Nb2/3O3 and SrTiO3-SrSc1/2Ta1/2O3 solid solutions

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ceramic samples of (1−x)SrTiO3-xSrMg1/3Nb2/3O3 and (1−x)SrTiO3-xSrSc1/2Ta1/2O3 were prepared, and their dielectric properties were studied at x=0.005–0.15 and 0.01–0.1, respectively, at frequencies 10 Hz–1 MHz and at temperatures 4.2–350 K. A giant dielectric relaxation was observed in the temperature range 150–300 K, and not so strong but well-developed relaxation was found in the temperature range 20–90 K. The activation energy U and the relaxation time τ0 were determined to be 0.21–0.3 eV and from 10−11 to 10−12 s for the high-temperature relaxation and 0.01–0.02 eV and 10−8–10−10 s for the low-temperature relaxation, respectively. The additional local charge compensation of the heterovalent impurities Mg2+ and Nb5+ (or Sc3+ and Ta5+) by free charge carriers or the host ion vacancies is suggested to be the underlying physical mechanism of the relaxation phenomena. On the basis of this mechanism, the Maxwell-Wagner model and the model of reorienting dipole centers Mg2+ (or Sc3+) associated with the oxygen vacancy are proposed to explain the high-temperature relaxation with some arguments in favor of the latter model. The polaron-like model with the Nb5+-Ti3+ center is suggested as the origin of the low-temperature relaxation. The reasons for the absence of ferroelectric phase transitions in the solid solutions under study are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979).

    Article  ADS  Google Scholar 

  2. H. Uwe and T. Sakudo, Phys. Rev. B 13, 271 (1976).

    Article  ADS  Google Scholar 

  3. V. V. Lemanov, Fiz. Tverd. Tela (St. Petersburg) 39, 1645 (1997) [Phys. Solid State 39, 1468 (1997)].

    Google Scholar 

  4. V. V. Lemanov, Ferroelectrics 226, 133 (1999).

    Google Scholar 

  5. J. G. Bednorz and K. A. Müller, Phys. Rev. Lett. 52, 2289 (1984).

    Article  ADS  Google Scholar 

  6. V. V. Lemanov, E. P. Smirnova, E. A. Tarakanov, and P. P. Syrnikov, Phys. Rev. B 54, 3151 (1996).

    Article  ADS  Google Scholar 

  7. V. V. Lemanov, E. P. Smirnova, and E. A. Tarakanov, Fiz. Tverd. Tela (St. Petersburg) 39, 714 (1997) [Phys. Solid State 39, 628 (1997)].

    Google Scholar 

  8. M. E. Guzhva, V. V. Lemanov, P. A. Markovin, and T. A. Shaplygina, Ferroelectrics 218, 93 (1998).

    Google Scholar 

  9. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, et al., Fiz. Tverd. Tela (St. Petersburg) 41, 1091 (1999) [Phys. Solid State 41, 994 (1999)].

    Google Scholar 

  10. Chen Ang, Zhi Yu, P. M. Vilarinho, and J. L. Baptista, Phys. Rev. B 57, 7403 (1998).

    ADS  Google Scholar 

  11. G. I. Skanavi and E. N. Matveeva, Zh. Éksp. Teor. Fiz. 30(6), 1047 (1956) [Sov. Phys. JETP 3, 905 (1957)].

    Google Scholar 

  12. G. I. Skanavi, I. M. Ksendzov, V. A. Trigubenko, and V. G. Prokhvatilov, Zh. Éksp. Teor. Fiz. 33(2), 321 (1957) [Sov. Phys. JETP 6, 250 (1958)].

    Google Scholar 

  13. Chen Ang, J. F. Scott, Zhi Yu, et al., Phys. Rev. B 59, 6661 (1999).

    ADS  Google Scholar 

  14. Chen Ang, Zhi Yu, J. Hemberger, et al., Phys. Rev. B 59, 6665 (1999).

    ADS  Google Scholar 

  15. Chen Ang, Zhi Yu, P. Lunkenheimer, et al., Phys. Rev. B 59, 6670 (1999).

    ADS  Google Scholar 

  16. Chen Ang, Zhi Yu, and L. E. Cross, Phys. Rev. B 62, 228 (2000).

    Article  ADS  Google Scholar 

  17. T. Y. Tien and L. E. Cross, Jpn. J. Appl. Phys. 6, 459 (1967).

    Article  Google Scholar 

  18. J. Bouwma, K. J. De Vries, and A. J. Burggraaf, Phys. Status Solidi A 35, 281 (1976).

    Google Scholar 

  19. Chen Ang and Zhi Yu, J. Appl. Phys. 71, 6025 (1992).

    Google Scholar 

  20. E. Iguchi and K. J. Lee, J. Mater. Sci. 28, 5809 (1993).

    Article  Google Scholar 

  21. Zhi Yu, Chen Ang, and L. E. Cross, Appl. Phys. Lett. 74, 3044 (1999).

    ADS  Google Scholar 

  22. D. W. Johnson, L. E. Cross, and A. Hummel, J. Appl. Phys. 41, 2828 (1970).

    Google Scholar 

  23. Chen Ang, J. R. Jurado, Zhi Yu, et al., Phys. Rev. B 57, 11858 (1998).

  24. Chen Ang, Zhi Yu, Zhi Jing, et al., Phys. Rev. B 61, 3922 (2000).

    ADS  Google Scholar 

  25. V. V. Lemanov, E. P. Smirnova, A. V. Sotnikov, and M. Weihnacht, Appl. Phys. Lett. 77, 4205 (2000).

    Article  ADS  Google Scholar 

  26. F. S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon, Oxford, 1969).

    Google Scholar 

  27. Powder Diffraction File, Inorganic Phases (International Center for Diffraction Data, Park Lane, Swarthmore, 1989).

  28. G. A. Samara and L. A. Boatner, Phys. Rev. B 61, 3889 (2000).

    Article  ADS  Google Scholar 

  29. V. A. Trepakov, M. E. Savinov, S. Kapphan, et al., Ferroelectrics 239, 305 (2000).

    Google Scholar 

  30. M. Itoh and R. Wang, Appl. Phys. Lett. 76, 221 (2000).

    Article  ADS  Google Scholar 

  31. H. Neumann and G. Arlt, Ferroelectrics 69, 179 (1986).

    Google Scholar 

  32. H. P. R. Frederikse and W. R. Hosler, Phys. Rev. 161, 822 (1967).

    Article  ADS  Google Scholar 

  33. A. Seuter, Philips Res. Rep. Suppl. 3, 1 (1974).

    Google Scholar 

  34. G. Arlt and H. Neumann, Ferroelectrics 87, 109 (1988).

    Google Scholar 

  35. I. Sakaguchi, H. Honeda, S. Hishita, et al., Nucl. Instrum. Methods Phys. Res. B 94, 411 (1994).

    Article  ADS  Google Scholar 

  36. V. S. Vikhnin, A. S. Polkovnikov, H. J. Reyher, et al., J. Korean Phys. Soc. 32, S486 (1998).

    Google Scholar 

  37. L. S. Sochava, V. E. Bursian, and A. G. Razdobarin, Fiz. Tverd. Tela (St. Petersburg) 42, 1595 (2000) [Phys. Solid State 42, 1640 (2000)].

    Google Scholar 

  38. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976; Nauka, Moscow, 1978).

    Google Scholar 

  39. M. Fisher, A. Lahmar, M. Maglione, et al., Phys. Rev. B 49, 12451 (1994).

  40. L. A. K. Dominik and R. K. MacCrone, Phys. Rev. 163, 756 (1967).

    Article  ADS  Google Scholar 

  41. V. V. Lemanov, V. A. Trepakov, P. P. Syrnikov, et al., Fiz. Tverd. Tela (St. Petersburg) 39, 1838 (1997) [Phys. Solid State 39, 1642 (1997)].

    Google Scholar 

  42. V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, et al., Solid State Commun. 110, 611 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1948–1957.

Original English Text Copyright © 2002 by Lemanov, Sotnikov, Smirnova, Weihnacht.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemanov, V.V., Sotnikov, A.V., Smirnova, E.P. et al. Giant dielectric relaxation in SrTiO3-SrMg1/3Nb2/3O3 and SrTiO3-SrSc1/2Ta1/2O3 solid solutions. Phys. Solid State 44, 2039–2049 (2002). https://doi.org/10.1134/1.1521453

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1521453

Keywords

Navigation