Skip to main content
Log in

Intracenter transitions of iron-group ions in II–VI semiconductor matrices

  • Reviews
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A review is made of studies of intracenter optical transitions in 3d shells of iron-group divalent (magnetic) ions. Attention is focused on the emission spectra of Mn2+ ions in CdTe, ZnS, and ZnSe crystals. An analysis is made of the structure of intracenter absorption and luminescence and of the effect that the elemental matrix composition, magnetic-ion concentration, temperature, hydrostatic pressure, and structural phase transitions exert on the intracenter transitions. The mutual influence of two electronic excitation relaxation mechanisms, interband and intracenter, is considered. The specific features of the intracenter emission of magnetic ions embedded in two-dimensional systems and nanocrystals associated with a variation in sp-d exchange interaction and other factors are discussed. Data on the decay kinetics over the intracenter luminescence band profile are presented as a function of temperature, magnetic ion concentration, and excitation conditions. The saturation of the luminescence and the variation of its kinetic properties under strong optical excitation, which are caused by excitation migration and the cooperative effect, as well as the manifestation of a nonlinearity in intracenter absorption, are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. E. Gumlich, J. Lumin. 23, 73 (1981).

    Google Scholar 

  2. K. A. Kikoin, V. I. Sokolov, V. N. Flerov, and V. V. Chernyaev, Zh. Éksp. Teor. Fiz. 83, 2335 (1982) [Sov. Phys. JETP 56, 1354 (1982)].

    Google Scholar 

  3. V. I. Sokolov and O. V. Dolzhenkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 455 (1998) [Semiconductors 32, 406 (1998)].

    Google Scholar 

  4. M. Beale, Philos. Mag. 68, 573 (1993).

    Google Scholar 

  5. X. Yang and X. Xu, Appl. Phys. Lett. 77, 797 (2000).

    ADS  Google Scholar 

  6. O. Goede and W. Heimbrodt, Phys. Status Solidi B 146, 11 (1988).

    Google Scholar 

  7. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).

    Article  ADS  Google Scholar 

  8. P. A. Wolff, in Semiconductors and Semimetals, Ed. by J. K. Furdyna and J. Kossut (Academic, London, 1988), Vol. 25.

    Google Scholar 

  9. H. J. Swagten, A. Twardowski, P. J. Eggenkamp, and W. J. M. de Jonge, Phys. Rev. B 46, 188 (1992).

    Article  ADS  Google Scholar 

  10. R. J. Nicholas, M. J. Lawless, H. H. Cheng, et al., Semicond. Sci. Technol. 10, 791 (1995).

    Article  ADS  Google Scholar 

  11. W. Busse, H.-E. Gumlich, and D. Theiss, J. Lumin. 12/13, 693 (1976).

    Google Scholar 

  12. J. N. Murrel, S. F. A. Kettle, and J. M. Tedder, Valence Theory (Wiley, London, 1965; Mir, Moscow, 1968).

    Google Scholar 

  13. P. Oelhagen, M. P. Vecchi, J. L. Treeong, and V. L. Moruzzi, Solid State Commun. 44, 1547 (1982).

    Google Scholar 

  14. W. Zahorowski and E. Gilberg, Solid State Commun. 52, 921 (1984).

    Article  Google Scholar 

  15. M. Taniguchi, L. Ley, R. L. Johnson, et al., Phys. Rev. B 33, 1206 (1986).

    Article  ADS  Google Scholar 

  16. A. Balzarotti, M. De Crescenzi, R. Messi, et al., Phys. Rev. B 36, 7428 (1987).

    ADS  Google Scholar 

  17. M. Taniguchi, A. Fujimori, M. Fujisawa, et al., Solid State Commun. 62, 431 (1987).

    Article  Google Scholar 

  18. J. Mašek and B. Velicky, Phys. Status Solidi B 140, 135 (1987).

    Google Scholar 

  19. A. Bonanni, K. Hingerl, H. Sitter, and D. Stifner, Phys. Status Solidi B 215, 47 (1999).

    ADS  Google Scholar 

  20. D. Boulanger, R. Parrot, U. W. Pohl, et al., Phys. Status Solidi B 213, 79 (1999).

    ADS  Google Scholar 

  21. J. Dreyhsig, K. Klein, H.-E. Gumlich, and J. W. Allen, Solid State Commun. 85, 19 (1993).

    Article  Google Scholar 

  22. C. Chen, X. Wang, Z. Qin, et al., Solid State Commun. 87, 717 (1993).

    Google Scholar 

  23. C.-L. Mak, R. Sooryakumar, M. M. Steiner, and B. T. Jonker, Phys. Rev. B 48, 11743 (1993).

    Google Scholar 

  24. M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Solid State Commun. 39, 367 (1981).

    Article  Google Scholar 

  25. J. F. MacKay, W. M. Becker, J. Spalek, and U. Debska, Phys. Rev. B 42, 1743 (1990).

    Article  ADS  Google Scholar 

  26. J. Watanabe, H. Arai, T. Nouchi, and J. Nakahara, J. Phys. Soc. Jpn. 61, 2227 (1992).

    Google Scholar 

  27. H. Schenk, M. Wolf, G. Mackh, et al., J. Appl. Phys. 79, 8704 (1996).

    ADS  Google Scholar 

  28. A. Lira, A. Mendes, L. Dagdug, et al., Phys. Status Solidi B 212, 199 (1999).

    ADS  Google Scholar 

  29. M. M. Moriwaki, W. M. Becker, W. Gebhardt, and R. R. Galazka, Phys. Rev. B 26, 3165 (1982).

    Article  ADS  Google Scholar 

  30. S. Biernacki, M. Kutrowski, G. Karczewski, et al., Semicond. Sci. Technol. 11, 48 (1996).

    ADS  Google Scholar 

  31. H. Anno, T. Koyanagi, and K. Matsubara, J. Cryst. Growth 117, 816 (1992).

    Article  ADS  Google Scholar 

  32. S. M. Durbin, J. Han. O. Sungki, and M. Kobayashi, Appl. Phys. Lett. 55, 2087 (1989).

    Article  ADS  Google Scholar 

  33. T. M. Giebultowicz, P. Klosowski, N. Samarth, et al., Phys. Rev. B 48, 12817 (1993).

    Google Scholar 

  34. E. Muller and W. Gerhardt, Phys. Status Solidi B 137, 259 (1986).

    Google Scholar 

  35. V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, Fiz. Tverd. Tela (St. Petersburg) 42, 816 (2000) [Phys. Solid State 42, 836 (2000)].

    Google Scholar 

  36. K. Ichino, H. Misasa, M. Kitagawa, et al., Jpn. J. Appl. Phys. 40, 1289 (2000).

    Google Scholar 

  37. T. P. Surkova, P. Kaszor, A. J. Zakrzewski, et al., J. Cryst. Growth 214/215, 576 (1999).

    Google Scholar 

  38. W. Paszkowicz, K. Godwod, J. Domagala, et al., Solid State Commun. 107, 735 (1998).

    Article  Google Scholar 

  39. R. Fiederling, M. Keim, G. Reuscher, et al., Nature 402, 787 (1999).

    ADS  Google Scholar 

  40. W. Giriat, Phys. Status Solidi B 136, K129 (1986).

    Google Scholar 

  41. V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 30, 3150 (1988) [Sov. Phys. Solid State 30, 1812 (1988)].

    Google Scholar 

  42. A. Anastassiadou, E. Liarokapis, S. Stoyanov, et al., Solid State Commun. 67, 633 (1988).

    Article  Google Scholar 

  43. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).

    Google Scholar 

  44. S. Ves, K. Strossner, W. Gebhardt, and M. Cardona, Phys. Rev. B 33, 4077 (1986).

    Article  ADS  Google Scholar 

  45. M. Kobayashi, Y. Nakamura, S. Endo, and W. Giriat, Phys. Status Solidi B 211, 359 (1999).

    ADS  Google Scholar 

  46. D. Some and A. V. Nurmikko, Phys. Rev. B 48, 4418 (1993).

    Article  ADS  Google Scholar 

  47. V. G. Abramishvili, A. V. Komarov, S. M. Ryabchenko, and Yu. G. Semenov, Solid State Commun. 78, 1069 (1991).

    Article  Google Scholar 

  48. V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 30, 3444 (1988) [Sov. Phys. Solid State 30, 1976 (1988)].

    Google Scholar 

  49. D. Leinen, Phys. Rev. B 55, 6975 (1997).

    Article  ADS  Google Scholar 

  50. T. P. Surkova, S. A. Permogorov, L. N. Tenichev, and V. P. Galakhov, J. Cryst. Growth 184/185, 1128 (1998).

    Article  Google Scholar 

  51. K. Dou, S. H. Huang, J. Q. Yu, et al., Solid State Commun. 76, 1165 (1990).

    Article  Google Scholar 

  52. Y. Terai, Sh. Kuroda, and R. Takita, Appl. Phys. Lett. 76, 2400 (2000).

    Article  ADS  Google Scholar 

  53. L. Chen, P. L. Klar, W. Heimbrodt, et al., Appl. Phys. Lett. 76, 3531 (2000).

    ADS  Google Scholar 

  54. J. Zhou, Y. Zhou, S. Buddhudu, et al., Appl. Phys. Lett. 76, 3513 (2000).

    ADS  Google Scholar 

  55. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  56. R. N. Bhargava, J. Cryst. Growth 214/215, 926 (2000).

    Article  Google Scholar 

  57. D. M. Hoffman, B. K. Meyer, A. I. Ekimov, et al., Solid State Commun. 114, 547 (2000).

    Article  Google Scholar 

  58. A. A. Bol and A. Meijerink, J. Lumin. 87/89, 315 (2000).

    Google Scholar 

  59. M. Tanaka, J. Qi, and Y. Matsumoto, J. Cryst. Growth 214/215, 410 (2000).

    Article  Google Scholar 

  60. L. M. Gan, B. Liu, C. H. Chew, et al., Langmuir 13, 6427 (1997).

    Article  Google Scholar 

  61. I. Yu, T. Isobe, and M. Senna, J. Phys. Chem. Solids 57, 373 (1996).

    Google Scholar 

  62. S.-M. Liu, F.-Q. Liu, H.-Q. Guo, et al., Solid State Commun. 115, 615 (2000).

    Google Scholar 

  63. W. Park, T. C. Jones, S. Schon, et al., J. Cryst. Growth 184/185, 1123 (1998).

    Article  Google Scholar 

  64. C. S. Kim, M. Kim, S. Lee, et al., J. Cryst. Growth 214/215, 395 (2000).

    Google Scholar 

  65. H. Falk, P. J. Klar, J. Hubner, et al., in Abstracts of Tenth International Conference on II–VI Compounds, Bremen, 2001, Tu-09.

  66. J. Nakamura, K. Takamura, and S. Yamamoto, Phys. Status Solidi B 211, 223 (1999).

    ADS  Google Scholar 

  67. P. Perlin, S. Shilo, T. Sosin, et al., J. Phys. Chem. Solids 56, 415 (1995).

    Google Scholar 

  68. J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985).

    Article  ADS  Google Scholar 

  69. J. M. Langer, C. Delerue, M. Lannoo, and H. Heinrich, Phys. Rev. B 38, 7723 (1988).

    Article  ADS  Google Scholar 

  70. T. Surkova, W. Giriat, M. Goldlewski, et al., Acta Phys. Pol. 88, 925 (1995).

    Google Scholar 

  71. V. F. Agekyan and F. Zung, Fiz. Tverd. Tela (Leningrad) 27, 1216 (1985) [Sov. Phys. Solid State 27, 732 (1985)].

    Google Scholar 

  72. J. Gregus, J. Watanabe, and J. Nakahara, J. Phys. Soc. Jpn. 66, 1810 (1997).

    Article  Google Scholar 

  73. E. Muller, W. Gebhardt, and V. Gerhardt, Phys. Status Solidi B 113, 209 (1982).

    Google Scholar 

  74. V. F. Agekyan and F. Zung, Fiz. Tekh. Poluprovodn. (Leningrad) 18, 1859 (1984) [Sov. Phys. Semicond. 18, 1160 (1984)].

    Google Scholar 

  75. H. Born, P. Thurian, T. Surkova, et al., J. Cryst. Growth 184/185, 1132 (1998).

    Article  Google Scholar 

  76. D. Scalbert, J. Chernogora, and C. Benoit a la Guillaume, Solid State Commun. 66, 571 (1988).

    Article  Google Scholar 

  77. V. F. Agekyan, Yu. V. Rud’, and R. Schwabe, Fiz. Tverd. Tela (Leningrad) 29, 1685 (1987) [Sov. Phys. Solid State 29, 970 (1987)].

    Google Scholar 

  78. D. L. Dexter, Chem. Phys. 21, 836 (1953).

    Google Scholar 

  79. T. H. Förster, Ann. Phys. 2, 55 (1948).

    MATH  Google Scholar 

  80. L. D. Park, S. Yamamoto, J. Watanabe, et al., J. Phys. Soc. Jpn. 66, 3289 (1997).

    Article  Google Scholar 

  81. M. Katiyar and A. N. Kitai, J. Lumin. 46, 227 (1990).

    Google Scholar 

  82. D. L. Huber, D. S. Hamilton, and B. Barnett, Phys. Rev. B 16, 4642 (1977).

    ADS  Google Scholar 

  83. D. L. Huber, Phys. Rev. B 20, 2307 (1979).

    ADS  Google Scholar 

  84. V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Condensed Matter (Nauka, Moscow, 1978; North-Holland, Amsterdam, 1982).

    Google Scholar 

  85. V. F. Agekyan, N. N. Vasil’ev, and A. Yu. Serov, Fiz. Tverd. Tela (St. Petersburg) 41, 49 (1999) [Phys. Solid State 41, 41 (1999)].

    Google Scholar 

  86. V. F. Aguekian, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, J. Cryst. Growth 214/215, 391 (2000).

    Article  Google Scholar 

  87. V. V. Ovsyankin and P. P. Feofilov, Opt. Spektrosk. 37, 262 (1973).

    Google Scholar 

  88. S. Yamamoto, K. Takamura, and J. Nakahara, Phys. Status Solidi B 211, 111 (1999).

    ADS  Google Scholar 

  89. V. F. Agekyan, N. N. Vasil’ev, A. Yu. Serov, and N. G. Filosofov, Fiz. Tverd. Tela (St. Petersburg) 43, 1562 (2001) [Phys. Solid State 43, 1626 (2001)].

    Google Scholar 

  90. J. T. Seo, U. Hommerich, S. V. Trivedi, et al., Opt. Commun. 153, 267 (1998).

    Article  ADS  Google Scholar 

  91. L. D. DeLoach, R. H. Page, G. D. Wilke, et al., IEEE J. Quantum Electron. 32, 885 (1996).

    Article  ADS  Google Scholar 

  92. R. H. Page, K. I. Schlaffers, L. D. DeLoach, et al., IEEE J. Quantum Electron. 33, 609 (1997).

    Article  Google Scholar 

  93. U. Hommerich, X. Wu, V. R. Davis, et al., Opt. Lett. 22, 1180 (1997).

    ADS  Google Scholar 

  94. A. V. Podlipensky, V. G. Shcherbitsky, N. V. Kiselev, et al., Opt. Commun. 167, 129 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Tverdogo Tela, Vol. 44, No. 11, 2002, pp. 1921–1939.

Original Russian Text Copyright © 2002 by Agekyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agekyan, V.F. Intracenter transitions of iron-group ions in II–VI semiconductor matrices. Phys. Solid State 44, 2013–2030 (2002). https://doi.org/10.1134/1.1521450

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1521450

Navigation