Skip to main content
Log in

Corona discharge at the tip of a tall object in the electric field of a thundercloud

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Characteristics of a positive transient corona discharge near the tip of a tall solitary grounded object in the electric field of a thundercloud are studied analytically and numerically. The time evolution of the discharge current and the space distribution of the total electric field are simulated for different growth rates of the external field and the dimensions and geometry of the stressed electrode. The effect of aerosol ions is shown to be negligible at a short duration of the corona. The developed simplified analytical approach agrees with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. D’Alessandro and G. Berger, J. Phys. D 32, 2785 (1999).

    ADS  Google Scholar 

  2. N. L. Aleksandrov, E. M. Bazelyan, R. B. Carpenter, et al., J. Phys. D 34, 3256 (2001).

    ADS  Google Scholar 

  3. M. A. Uman, Lightning Discharge (Academic, New York, 1987).

    Google Scholar 

  4. S. Chauzy and P. Raizonville, J. Geophys. Res. 87, 3143 (1982).

    ADS  Google Scholar 

  5. S. Chauzy and C. Rennela, J. Geophys. Res. 90, 6051 (1985).

    ADS  Google Scholar 

  6. N. V. Bogdanova, B. G. Pevchev, and S. W. Polewoy, in Proceedings of the 4th International Conference on Gas Discharges, London, 1976, p. 237.

  7. V. I. Popkov, Corona Discharge and Extra-High-Voltage Lines (Nauka, Moscow, 1990).

    Google Scholar 

  8. L. B. Loeb, Electrical Coronas (University of California Press, Los Angeles, 1965).

    Google Scholar 

  9. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer-Verlag, Berlin, 1991).

    Google Scholar 

  10. É. M. Bazelyan, Élektrichestvo, No. 6, 60 (1990).

  11. É. M. Bazelyan and Yu. P. Raizer, Usp. Fiz. Nauk 170, 753 (2000).

    Google Scholar 

  12. Ya. I. Sal’m, in Plasma Chemistry, Ed. by B. M. Smirnov (Énergoatomizdat, Moscow, 1993), Vol. 17, p. 194.

    Google Scholar 

  13. M. L. Huertas and J. Fontan, Atmos. Environ. 9, 1018 (1975).

    Google Scholar 

  14. A. Luts and J. Salm, Uch. Zap. Tartu. Gos. Univ. 824, 60 (1988).

    Google Scholar 

  15. A. Luts and J. Salm, J. Geophys. Res. 99, 10781 (1994).

  16. E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1985).

    Google Scholar 

  17. E. S. Kolechitskii, Computation of Electric Fields of High-Voltage Equipments (Énergoatomizdat, Moscow, 1983).

    Google Scholar 

  18. R. B. Carpenter, Jr. and M. M. Drabkin, in Proceedings of the 25th International Conference on Lightning Protection, Rhodes, Greece, 2000, p. 380.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika Plazmy, Vol. 28, No. 11, 2002, pp. 1032–1045.

Original Russian Text Copyright © 2002 by Aleksandrov, Bazelyan, Drabkin, Carpenter, Raizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, N.L., Bazelyan, E.M., Drabkin, M.M. et al. Corona discharge at the tip of a tall object in the electric field of a thundercloud. Plasma Phys. Rep. 28, 953–964 (2002). https://doi.org/10.1134/1.1520289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1520289

Keywords

Navigation